• Title/Summary/Keyword: Condensing Pressure

Search Result 102, Processing Time 0.182 seconds

Condensing Heat Transfer of Natural Refrigerants with Nanoparticles in Enhanced Tube (나노입자를 포함한 자연냉매의 마이크로 휜관 응축 열전달 특성)

  • Lee, H.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.19-25
    • /
    • 2008
  • This paper deals with the heat transfer and pressure drop characteristics of R-290 (Propane), R-600a (Iso-butane) and R-1270 (Propylene) as an environment friendly refrigerant and R-22 as a HCFC's refrigerant for condensing. The test section is a horizontal double pipe heat exchanger. Condensing heat transfer and pressure drop measurements were Peformed for 12.70 mm micro-fin tube and compared with the results in smooth tube. The local condensing heat transfer coefficients of hydrocarbon refrigerants were superior to those of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-600a. The average condensing heat transfer coefficients in hydrocarbon refrigerants showed 20 to 28% higher values than those of R-22. Hydrocarbon refrigerants have a higher pressure drop than that of R-22 with respect to refrigerant qualify and mass flux. Also, the condensing heat transfer coefficient and pressure drop of working fluids in smooth and micro-fin tube were compared. The heat transfer enhancement factor (EF) between smooth and micro-fin tube varied from 2.2 to 2.6 in all experimental conditions.

  • PDF

Heat Transfer Characteristics of R-407C During Condensing Inside Horizontal Smooth and Micro-Fin Tubes (수평 평활관 및 전열촉진관내 대체 냉매 R-407C의 응축 열전달 특성에 관한 연구)

  • Roh, Geonsang;Oh, Hookyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.210-217
    • /
    • 1999
  • This paper reports the experimental results on heat transfer characteristics of R-22 and R-407C(HFC-32/125/134a 23/25/52 wt%) condensing inside horizontal smooth and finned tubes. The test condensers used In the study are double pipe heat exchangers of 7.5 mm ID, 9.5 mm OD smooth tube, and 60 finned micro-fin tube with 8.53 mm ID, 9.53 mm OD. Each of these tubes was 4 000 mm long tubes connected with an U-bend. These U type two-path test tubes are divided In 8 local test sections for the identification of the local condensing heat transfer characterisitcs and pressure drop, U-bend effects on condensing flows. Inlet quality is maintained 1.0, and refrigerant mass velocity is varied from 102.0 to $301.0kg/m^2{\cdot}s$. From the results, it was found that the pressure drop of the R-407C Increased, and heat transfer coefficient decreased compared to those of R-22. In comparison condensing heat transfer characteristics of micro-fm tube with those of smooth tube, increasing of condensing heat transfer coefficient was found outstanding compared to the increasing ratio of pressure drop. Furthermore, pressure drop In U-bend showed at most a 30 % compared to the total pressure drop in the test section.

An Experimental Study on Performance Characteristics of Refrigeration System Using R134a Refrigerating System (R134a를 이용한 냉동장치의 성능특성에 관한 실험적 연구)

  • Kim, Jin-Hyun;Kim, Jong-Kil;Kim, Sung-Bae;Ha, Ok-Nam
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2188-2193
    • /
    • 2007
  • Since the use of CFCs and HCFCs refrigerants are to be restricted due to the depletion of ozone layer, this experiment applies the R134a gas to study the performance characteristic from the superheat control for improving the energy efficiency. The experiments are carried out for the condensing pressure of refrigeration system from 1.5 MPa to 1.6 MPa by 0.05 MPa and for superheat temperature from 0$^{\circ}C$ to 5$^{\circ}C$ by 1$^{\circ}C$ at each condensing pressure. As a result of experiment, when the superheat temperature is 1$^{\circ}C$ at each condensing pressure, the refrigeration system has the highest performance.

  • PDF

The Study on Performance Characteristics of NH3 Refrigeration System Using Optimum Heat Exchanger (고밀도 열교환기를 이용한 $NH_3$냉동장치의 성능 특성 연구)

  • Lee, Seung-Jae;Jeon, Sang-Sin;Kwon, Il-Wook;Lee, Jong-In;Ha, Ok-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1276-1281
    • /
    • 2004
  • Nowadays CFCs and HCFCs refrigerants are restricted because it cause depletion of ozone layer. Accordingly, this experiment apply the ammonia gas and not CFCs and HCFCs for refrigerant to study the performance characteristic from the superheat control and improve the energy efficiency from the high performance. The condensing pressure of refrigeration system is increased from 15.0bar to 16bar by 0.5bar and superheat temperature is increased from $0^{\circ}C$ to $10^{\circ}C$ by $1^{\circ}C$ at each condensing pressure. As the result of experiment, when the superheat temperature is $0^{\circ}C$ at each condensing pressure, the refrigeration system has the high performance.

  • PDF

The Study on Performance Characteristics of Superheating the Suction Vapor in $NH_3$ Refrigeration System ($NH_3$ 냉동장치의 과열도 변화에 의한 성능 특성 연구)

  • 권일욱;하옥남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.756-761
    • /
    • 2004
  • Since the use of CFC and HCFC refrigerants are to be restricted due to the depletion of ozone layer, this experiment applies the NH$_3$ gas to study the performance characteristics from the superheat control for improving the energy efficiency. The experiments are carried out for the condensing pressure of refrigeration system from 14.5 bar to 16.0 bar by 0.5 bar and for superheat temperature from $0^{\circ}C$ to 1$0^{\circ}C$ by 1$^{\circ}C$ at each condensing pressure. As a result of experiment, when the superheat temperature is 1$^{\circ}C$ at each condensing pressure, the refrigeration system has the highest performance.

The Study on Performance Characteristics due to the Superheat Temperature of $NH_3$ Refrigeration System (과열도 변화에 의한 $NH_3$ 냉동장치의 성능특성 연구)

  • Jeong, Sang-Sin;Kwon, Il-Wook;Ha, Ok-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1334-1339
    • /
    • 2004
  • Nowadays CFCs and HCFCs refrigerants are restricted because it cause depletion of ozone layer. Accordingly, this experiment apply the $NH_3$ gas and not CFCs and HCFCs for refrigerant to study the performance characteristic from the superheat control and improve the energy efficiency from the high performance. The condensing pressure of refrigeration system is increased from 14.5bar to 16bar by 0.5bar and superheat temperature is increased from $0^{\circ}C$ to $10^{\circ}C$ by $1^{\circ}C$ at each condensing pressure. As the result of experiment, when the superheat temperature is $1^{\circ}C$ at each condensing pressure, the refrigeration system has the high performance.

  • PDF

Identification of Two-phase Flow Patterns in a Horizontal Tubular Condenser (수평 응축관내 2상유동양식의 판별에 관한 연구)

  • Lee, S.C.;Han, Y.O.;Shin, H.S.;Lee, H.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.65-72
    • /
    • 1993
  • An experiment has been carried out to identify flow patterns in a horizontal condensing flow with R-113. Characteristics of flow patterns were determined based upon a statistical analysis of differential pressure fluctuations at an orifice. The probability density function and power spectral density function of instantaneous pressure drop curves for various flow conditions were obtained. In comparison to the results of air-water flows, the flow patterns in a condensing flow such as annular, wavy, slug and plug could be identified. The experimental data determined by this technique were compared with the flow pattern maps suggested by other investigators. The result indicates that the statistical characteristics of differential pressure fluctuations at an orifice may be a useful tool for identifying flow patterns both in condensing flows and in adiabatic two-phase flows.

  • PDF

Experiments on Condensation Heat Transfer and Pressure Drop in Plate Heat Exchangers with Different Chevron Angles (판형 열교환기의 세브론각에 따른 응축열전달 및 압력강하 실험)

  • 김윤호;한동혁;이규정
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1141-1148
    • /
    • 2001
  • Experiments on the condensation heat transfer and pressure drop in the brazed type plate heat exchangers are performed with refrigerants R410A/R22. To investigate the geometric effect, plate heat exchangers with the same pitch and height but different $45^{\circ},\;35^{\circ}and\;20^{\circ}$ chevron angles are used. Varying the mass flux of refrigerant (13~34 kg/$m^2$), the condensing temperatures ($20^{\circ}C\;and\;30^{\circ}C$) and the vapor quality (from 0.9 to 0.15) at the same constant heat flux ($5kW/m^2$), the condensation heat transfer coefficients and pressure drops are measured. The heat transfer coefficients decrease slightly with increasing the condensing temperature at a given mass flux in all plate heat exchangers. The pressure drop increases with increasing the mass flux and the quality and decreasing the condensing temperature and the chevron angle.

  • PDF

An Application of Optimum Heat Exchanger for the Grasp on Performance Characteristics of $NH_3$ Refrigeration System

  • Ha Ok Nam;Kwon Il Wook;Hong Suck Ju;Kim Jae Yeol;Lee Jong In;Jeon Sang Sin;Ha Kyung Soo;Lee Seung Jae;Park Chan Soo;Jeong Song Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • Since the use of CFC and HCFC refrigerants is to be restricted due to the depletion of ozone layer, this experiment applies the $NH_{3}$ gas to study the performance characteristics from the superheat control for improving the energy efficiency. The experiments are carried out for the condensing pressure of refrigeration system from 1500kPa to 1600kPa by 50kPa and for degree of superheat from $0^{circ}$ to $1^{circ}$ by $10^{circ}$ at each condensing pressure. As a result of experiment, 1) As degree of superheat increased, evaporating pressure of the compressor decreased so equilibrium temperature decreased. And specific volume of refrigerant vapors increased so refrigerant mass flow and heat load of the evaporator decreased. 2) An influence of change of condensing pressure on heat load of the evaporator was insignificant. 3) With the identical degree of superheat, change of compressed temperature was insignificant according to each condensing pressure, so there was little change in enthalpy.4) when the degree of superheat is $0^{circ}$C at each condensing pressure, the refrigeration system has the hi띤est performance.

Characteristics of Condensing Heat Transfer and Pressure Drop of HCs Refrigerants (탄화수소계 냉매의 응축 열전달 및 압력강하 특성)

  • Lee, Ho-Saeng;Lee, Kwang-Bae;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1143-1148
    • /
    • 2005
  • Experimental results for heat transfer characteristic and pressure gradient of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during condensing inside horizontal double pipe heat exchangers are presented. The test sections which have one tube diameter of 12.70 mm with 0.86 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local condensing heat transfer coefficients of hydrocarbon refrigerants were higher than those of R-22. The average condensing heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than those of R-22 in 12.7 mm and 9.52 mm. This results from the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

  • PDF