• Title/Summary/Keyword: Condenser pressure

Search Result 249, Processing Time 0.024 seconds

이젝터가 부착된 냉동시스템의 성능실험

  • 이원희;김윤조;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.993-1001
    • /
    • 2001
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were performed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one evaporator) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flaw rate ratio of suction fluid to motive fluid increases. The COP of dual-evaporator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.

  • PDF

Experimental Study on the Performance of Refrigeration System with an Ejector

  • Lee, Won-Hee;Kim, Yoon-Jo;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.201-210
    • /
    • 2002
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were peformed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one of the evaporators) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flow rate ratio of suction fluid to motive fluid increases. The COP of dual-evapo-rator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.

Development of Simulation Program for Multi-Air conditioner (멀티에어컨의 성능해석 프로그램 개발)

  • Jeong, B.Y.;Koh, J.Y.;Park, B.D.;Yim, C.S.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • In this study, theoretical simulation method for the steady state characteristics of a refrigeration cycle which consists of one condenser and multi-evaporator (Multi-air conditioner) is presented. The simulation was performed for a typical multi-air conditioning system consisted one outdoor unit with air-cooled condenser, compressor, linear electric expansion valve and bypass circuit and connected three-evaporators (three indoor units). The simulation results are good agreement with those of experiments within 5 $\sim$ 10% at the given system operation conditions which are condensing pressure, evaporating pressure, sub-cooled degree of condenser, superheated degree, discharge temperature of compressor and pulse of linear electric expansion valve.

  • PDF

Test of Dynamic Pressurizer Model for CANDU Reactor System Simulation

  • Lee, S.H.;Lim, J.C.;Park, J-W.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.103-108
    • /
    • 1993
  • In nuclear power plants using pressurized water as the main coolant, it is necessary to maintain system pressure within operational range. During transients, the coolant shrinks and expands causing insurge and outsurge of coolant in the pressurizer. In CANDU system, the pressure is controlled mainly by the pressurizer/degasser-condenser system. In CANDU system, the control of heat transport system pressure is achieved by giving heat to the pressurizer by activating the heaters to compensate a diminution in pressure or by removing heat from the pressurizer by bleeding steam to the degasser-condenser to compensate an increase in pressure. This study aims at developing a theoretical model capable to simulate various operational transients in the CANDU primary heat transport system (PHTS), applicable to CANDU engineering simulator on real time basis.

  • PDF

The Effect of Porthole Shape on Elastic Deformation of Die and Process at Condenser Tube Extrusion (포트홀 형상이 컨덴서 튜브 직접 압출 공정 및 금형 탄성 변형에 미치는 영향)

  • Lee, J.M.;Kim, B.M.;Jo, H.;Jo, H.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.315-318
    • /
    • 2003
  • Recently, condenser tube which is used for a cooling system of automobiles is mainly manufactured by the conform extrusion but this method is inferior as compared with direct extrusion in productivity per the unit time and in the equipment investment. Therefore, it is essential for the conversion of direct extrusion with porthole die. The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. This study is designed to evaluate metal flow, welding pressure, extrusion load tendency of mandrel deflection that is affected by variation of porthole shape in porthole die. Estimation is carried out using finite element method under the non-steady state. Also this study was examined into the cause of mandrel fracture through investigating elastic deformation of mandrel during the extrusion.

  • PDF

Performance of A Three-Stage Condensation Heat Pump

  • Lee, Yoon-Hak;Jung, Dong-Soo;Kim, Chong-Bo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.55-68
    • /
    • 1999
  • In this study, computer simulation programs were developed for single-stage, two-stage, and three-stage condensation heat pumps and their performance with CFC11, HCFC123, HCFC141b was examined under the same external conditions. The results showed that the coefficient of performance(COP) of an optimized 'non-split type' three-stage condensation heat pump is 25-42% higher than that of a conventional single-stage heat pump. The increase in COP, however, differed among the fluids tested. The improvement in COP is largely due to the decrease in average LMTDs in condensers, which results in the decrease in thermodynamic irreversibility in heat exchange process. For the three-stage heat pump, the highest COP is achieved when the total condenser area is evenly distributed among the three condensers. For the two-stage heat pump, however, the optimum distribution of the total condenser area varies with an individual working fluid. For the three-stage system, 'splitting the condenser cooling water'for the use of intermediate and high pressure subcoolers helps increase the COP further. When the individual cooling water entering the intermediate and high pressure subcoolers is roughly 10% of the total condenser cooling water, the maximum COP is achieved showing roughly an 11% increase in COP as compared to that of the 'non-split type' heat pump.

  • PDF

Development of Direct Extrusion Process on Al 1050 Condenser Tube by using Porthole Die (포트홀 다이를 이용한 Al1050 컨덴서 튜브의 직접압출공정 기술 개발)

  • 이정민;김병민;강충길;조형호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.53-61
    • /
    • 2004
  • Condenser tube which is used for a cooling system of automobiles is mainly manufactured by conform extrusion. However, direct extrusion using porthole die in comparison with conform extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process is useful for manufacturing long tubes with hollow sections and consists of three stages(dividing, welding and forming stages). Especially, Porthole die for producing condenser tube is very complex. Thus, in order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible. This paper describes FE analysis of non-steady state porthole die extrusion for producing condenser tube with multi-hole through 3D simulation in the non-steady state during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion load. Also to validate FE simulation of porthole die extrusion, a comparison of simulation and experiment results was presented in this paper.

Analysis of Pressure Drop and Heat Loss in Liquid Sodium Circulation Wick of AMTEC (AMTEC의 소디움액체 순환윅에서 압력손실 및 열손실해석)

  • Lee, Ki-Woo;Lee, Wook-Hyun;Rhi, Seok-Ho;Lee, Kye-Bock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.953-960
    • /
    • 2012
  • An AMTEC (alkali metal thermal electric converter) is a device that is used for the direct conversion of heat to electricity. Sodium is used as the working fluid, and its circulation is driven by a capillary wick. The wicks used for circulation include an evaporator wick, artery wick, and condenser wick, and each wick has a pressure drop because of the circulation of liquid and vapor. For the circulation of sodium, the capillary pressure of the evaporator wick must be greater than the total pressure drop in the wicks. In this study, the pressure drop in the evaporator wick, artery wick, and condenser wick and the heat loss from the evaporator to the condenser through the artery wick were analyzed for the design of a 100 W AMTEC prototype. It was found that a particle diameter of 10 ${\mu}m$ is suitable for the evaporator wick to maintain a capillary pressure greater than total pressure drop in the circulation loop.

The Effect of R-12 and R-134a Refrigerant on the Performance of Refrigeration Equipment for R-12 Refrigerant (R-12 냉매용 냉동장치의 성능에 미치는 R-12와 R-134a 냉매의 효과)

  • Lee, Hong-Gee;Jang, Dong-Ho;Jung, Yong-Jin;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.15-20
    • /
    • 2000
  • High pressure, pressure ratio, refrigerating effect, heat transfer from the condenser and the power of the compressor etc. of a self-made refrigeration equipment for R-12 are investigated when R-12 and R-134a are used as the coolants. The comparison between the performance for R-12 and that for R-134a is made. As a result, R-134a is better than R-12 in the view of high pressure, refrigerating effect and the coefficient of performance and vice versa in the view of pressure ratio, exit gas temperature from the compressor and heat transfer from the condenser.

  • PDF

Numerical study on the heat transfer characteristics of the condenser for the car air-conditioners (자동차 공조용 응축기의 열전달특성에 관한 수치적 연구)

  • 배성열;정백영;김일겸;박상록;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.315-323
    • /
    • 1998
  • This paper contains a verification of simulation program to predict the capacity of a condenser used in car air-conditioners. Verification of simulation program is carried out with the comparison error between experiment and simulation bounds within 3.5%. The present investigation shows the results for heat transfer rates of condenser under different operating conditions, such as velocity and degree of superheat. The range of front velocity of air is 1∼5m/s. As the front velocity is increased, the heat transfer rate of condenser is largely increased at a low velocity range. In a meanwhile, heat transfer rate of condenser is almost constant in a range of velocity over 3m/s. As for the effect of inlet pressure of refrigerant on the heat transfer rate, we obtained the similar trend of heat transfer rates as like varying the front velocity, Also we have calculated the heat transfer rates with varying inlet superheats of refrigerant, the larger the superheat is, the more heat transfer rate is obtained.

  • PDF