• Title/Summary/Keyword: Condenser dryer

Search Result 15, Processing Time 0.022 seconds

Prediction of the Drying Time under the Various Operational Conditions using a Sublimation Model (승화 건조모델에 대한 운전방법별 건조시간의 예측)

  • 박노현;배신철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2088-2098
    • /
    • 1993
  • A mathematical model of freeze drying by sublimation was suggested and used to estimate the drying time. Under the various conditions, the drying time of pure water and carrot was numerically calculated for the suggested model. Optimal policies of freeze drying were investigated experimentally in a laboratory freeze dryer. It was found that the shortest drying times could be obtained when the chamber pressure and condenser temperature were kept at their lowest values and the best method of heat transfer for sublimation was the conduction involving radiation. The sublimation drying period was finished when the bottom temperature of material could be reached at near $0^{\circ}C$ from frozen temperature.

Isolation of Volatiles from Panax ginseng Root by Vacuum-Distillation with Freeze-Drying (동결건조시 감압증류되는 인삼의 휘발성물질의 분리)

  • Park, Hoon;Sohn, Hyun-Joo;Cho, Byung-Goo
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.353-356
    • /
    • 1990
  • The isolation of volatile compounds by vacuum-distillation with freeze-drying was tested 1 with fresh ginseng roots. The roots were frozen at-8$0^{\circ}C$; they were dried at-4$0^{\circ}C$ tinder vacuum(40 tory), for 24 hours; and the ice condensed at the silrface of condenser in the freeze-dryer was thauved at room temperature. The ether extract of the resulting aqueous solution was analyzed by gas chromatography (GC) equipped with a flame ionization detector (FID) or a nitrogen-phosphorils detecto(NPD) and by gas : chromatography/mass spectrometry(GC/MS). More than forty peaks were observed in the CG(FID) profile. and more than ten peaks were observed in the GC(NPD) profile. Among them, thirteen components 1including one aldehyde, four hydrocarbons, two esters, folly alcohols, and two vyrazines were identified: six components the molesuiar ions of which were m/z, 204 were estimated to be a series of azulene compounds; and the other components unidentified were estimated to have molecular weights of lower than 254. Therefore, the freeze-drying technicue is thought to be usefu1 for the isolation of volatile compounds of such low molecufilar weights from vegetables, fruits and biological fluids as well as fresh ginseng roots under the tested conditions.

  • PDF

Prediction of Sublimation Drying Time for Carrot in Freeze-Drying (당근의 동결건조에서 승화건조시간 예측연구)

  • Park, Noh-Hyun;Kim, Byung-Sam;Bae, Sin-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.313-320
    • /
    • 1993
  • A sublimation model of the freeze drying process, which accounted for the removal of free water, was presented and used to study the operation conditions of freeze driers for carrot juice. It was found that the shortest drying time was obtained when the condenser temperature and chamber pressure were kept at heir lowest values and the plate temperature was controlled independently so that the scorch and melting constraints were both held throughout the drying period. The effect of sample thickness on the drying time was significant. Optimal policies were investigated experimentally in laboratory freeze dryer.

  • PDF

A Study on the Closed-Loop Air Drying Technology for Drying Wastewater Sludge (하수슬러지 건조를 위한 폐루프 공기건조 기술에 관한 연구)

  • Lee, Jung-Eun;Cho, Eun-Man;Kang, Dong-Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.821-827
    • /
    • 2012
  • Air drying is a technology to dry sludge at the ejector and multi cyclone as intaking and blowing air from outside. So, this technology has a weak point that operating fluctuation is large according to an outside conditions as well as energy consumption is also large due to open loop structure. This is to develop the closed-loop air drying system to be built the dehumidifier consisted of condenser, cooler and compressor at rear side of separator of air dryer, as a way to solve some problem. Air is circulation by the method of blowing-drying-dehumidifying-blowing within this system. It is analyzed that an air circulated at closed-loop air drying equipment contains the energy of 50% more compared with open-loop air drying and is operated regularly because of quality maintenance of air to dry sludge. And also it is analyzed that the cost of drying sludge of 1 ton by closed-loop air drying equipment is lower about 35% than conventional equipment. Therefore, this is evaluated by useful drying technology to face an unexpected climatic conditions due to regular operation as well as low energy consumption.

Cooling Performance Deficiency of Air Conditioning System According to Air Quantity Included in Refrigerant (냉매 내 공기혼입에 따른 에어컨 시스템의 냉각성능 저하)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.470-475
    • /
    • 2009
  • This study was performed to present the diagnosis basis of cooling performance deficiency according to air quantity included in refrigerant of air-conditioner by detecting the temperatures and pressures of refrigerant pipeline. The car air-conditioner of SONATA III (Hyundai motor Co., Korea) was tested by maximum cooling condition at 1500 rpm of engine speed in the room with controlled air condition at $33\sim35^{\circ}C$ and 55~57% RH. Measured variables were temperature differences between inlet and outlet pipe surface of the compressor (Tcom), condenser (Tcon), receive dryer (Trec) and evaporator (Teva), and high pressure (HP) and low pressure (LP) in the refrigerant pipeline, and temperature difference (Tcoo) between inlet and outlet air of the cooling vent of evaporator. Control variables were the refrigerant charging weight and the vacuum degree in the refrigerant pipeline before charging refrigerant. From the test, it was represented that the measuring values of (Tcom), LP and (Tcoo) were enabled to make the diagnosis of cooling performance deficiency according to quantity included in refrigerant of air-conditioner. The ranges of Tcom, LP and Tcoo to make the diagnosis of cooling performance deficiency were respectively less than $55^{\circ}C$, more than 166.7 kPa-g(1.7 kgf/$cm^2$) and less than $13.7^{\circ}C$. In the case of using only external sensors and the condition under the normal performances of air conditioner, it was considered that the ranges of LP and Tcoo to make the diagnosis of cooling performance deficiency were respectively more than 166.7 Pa and less than $12^{\circ}C$.