• Title/Summary/Keyword: Condenser Tube

Search Result 209, Processing Time 0.026 seconds

Computer Simulation on the Performance of Air-Cooled Condenser for an Absorption Heat Pump (흡수식 열펌프용 공냉식 응축기의 성능특성에 관한 시뮬레이션)

  • 박윤철;민만기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1999-2011
    • /
    • 1995
  • Computer simulation was conducted to study performance characteristics of air-cooled condenser of a double effect absorption heat pump with variations of saturation pressures and mass flow rates of the refrigerant ; volume flow rates, relative humidities and temperatures of the air The vertically installed condenser had the staggered tube array with continuous plate fins of wavy type. When the saturation pressure of the condenser was decreased from 760 torr to 20 torr, heat transfer rates and condensing rates of refrigerant were decreased. If excess refrigerant flows in the condenser, the pressure and saturation temperature of the condenser were increased which makes the refrigerating capacity of an absorption heat pump reduced.

Numerical study of heat and mass transfer around an evaporative condenser tube by multi-zone method (다중 영역법을 이용한 증발식 응축관 주위의 열 및 물질전달 해석)

  • ;;Yun, In-Chul;Yoo, Je-In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3317-3328
    • /
    • 1995
  • The objective of the present study is to predict the characteristics of heat and mass transfer around an evaporative condenser. Numerical calculations have been performed using multi-zone method to investigate heat transfer rate and evaporation rate with the variation of inlet condition(velocity, relative humidity and temperature) of the moist air, the flow rate of the cooling water and the shape of the condenser tube. From the results it is found that the profile of heat flux is the same as that of evaporation rate since heat transfer along the gas-liquid interface is dominated by the transport of latent heat in association with the vaporization(evaporation) of the liquid film. The evaporation rate and heat transfer rate is increased as mass flow rate increases or relative humidity and temperature decrease respectively. But the flow rate of the cooling water hardly affect the evaporation rate and heat flux along the gas-liquid interface. The elliptic tube which the ratio of semi-minor axis to semi-major axis is 0.8 is more effective than the circular tube because the pressure drop is decreased. But the evaporation rate and heat flux shown independency on the tube shape.

Performance evaluation of brazed aluminum heat exchangers for a condenser in residential air-conditioning applications (가정용 공조기의 응축기 적용 알루미늄 열교환기의 성능 평가)

  • 김만회;김권진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.44-55
    • /
    • 1998
  • The evaluation of aluminum flat tube and louver fin heat exchangers for a condenser in residential air-conditioning applications has been conducted. A series of tests for two-different brazed aluminum heat exchangers was performed and the results were compared with conventional fin and tube heat exchangers for residential air-conditioning system. Refrigerant charge amount for a window-system air-conditioner with the brazed aluminum condenser is decreased by 35% and the volume and material of heat exchanger can be reduced by 50% compared to the conventional fin and tube heat exchangers.

  • PDF

An Experimental Study on Ultrasonic Spray Cooling of Heat Pipe Condenser (히트파이프 응축부의 초음파 분무냉각에 관한 실험적 연구)

  • 김영찬;한양호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 2004
  • In this study, the spray cooling heat transfer and working characteristics of the screen wick heat pipe with ultrasonic spray cooling system in condenser were experimentally investigated. The heat pipe was made of copper tube 300 mm long with inner diameter of 11.1 mm. The evaporator and condenser lengths of heat pipe were 40, 200 mm and the wick structure consists of two layer of 100 mesh copper screen. The experimental results show that the ultrasonic spray cooling increases the heat transfer rate on the condenser surface, and the total thermal resistance of heat pipe system decreases remarkably. A comparison is made for the two working fluids, water and ethanol. The surface temperature of the ethanol tube in evaporator section becomes higher than that of the water tube. Thus, the experimental result shows that water is more useful than ethanol as the working fluid because of increasing the operational limit within this experimental conditions.

Heat and Mass Transfer Characteristics and Performance Evaluation of a Double-Tube Condenser for an Alternative Refrigerant (대체냉매의 2중관 응축기 열 및 물질전달과 성능평가)

  • 이상무;박병덕;소산번
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.468-476
    • /
    • 2002
  • This paper deals with heat and mass transfer characteristics and performance evaluation of a counter flow double-tube condenser for a multi-component refrigerant mixture. The local heat and mass transfer characteristics of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a are evaluated for a counter flow double-tube condenser cooled by water. Then, the local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, heat flux and condensation mass flux are obtained. The heat exchange performance for ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a on the total pressure drop and the heat transfer characteristics are also compared with those for R404A, R410A, R502, R22, R32, Rl23 and R134a.

STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

  • Lim, Heok-Soon;Song, Tae-Young;Chi, Moon-Goo;Kim, Seoung-Rae
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

Performance evaluation of PF-condenser adapted to Large Size air-conditioner (대형 에어컨에 적용된 PF열교환기의 성능평가)

  • Cho, J.P.;Choi, Y.H.;Kim, J.H.;Kim, N.H.;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.1-6
    • /
    • 2000
  • In this study, We evaluated the Performance of PFC and the system performance of large size air-conditioner applying to outdoor condenser. PFC can meet the same cooling capacity in 40.42% of volume to fin-tube condenser. Although the fin-tube condenser requires 3600g of refrigerant charging, PFC requires 1700g, 1800g, 1900g, 2000g refrigerant charging for each 2.0mm, 2.5mm, 3.0mm and 3.5mm fin pitches. Difference of condensing and evaporation pressure is the biggest point 2.0mm fin pitch and the smallest point 2.5mm fin pitch.

  • PDF

The Effect of Porthole Shape on Elastic Deformation of Die and Process at Condenser Tube Extrusion (포트홀 형상이 컨덴서 튜브 직접 압출 공정 및 금형 탄성 변형에 미치는 영향)

  • Lee, J.M.;Kim, B.M.;Jo, H.;Jo, H.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.315-318
    • /
    • 2003
  • Recently, condenser tube which is used for a cooling system of automobiles is mainly manufactured by the conform extrusion but this method is inferior as compared with direct extrusion in productivity per the unit time and in the equipment investment. Therefore, it is essential for the conversion of direct extrusion with porthole die. The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. This study is designed to evaluate metal flow, welding pressure, extrusion load tendency of mandrel deflection that is affected by variation of porthole shape in porthole die. Estimation is carried out using finite element method under the non-steady state. Also this study was examined into the cause of mandrel fracture through investigating elastic deformation of mandrel during the extrusion.

  • PDF

Development of Direct Extrusion Process on Al 1050 Condenser Tube by using Porthole Die (포트홀 다이를 이용한 Al1050 컨덴서 튜브의 직접압출공정 기술 개발)

  • 이정민;김병민;강충길;조형호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.53-61
    • /
    • 2004
  • Condenser tube which is used for a cooling system of automobiles is mainly manufactured by conform extrusion. However, direct extrusion using porthole die in comparison with conform extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process is useful for manufacturing long tubes with hollow sections and consists of three stages(dividing, welding and forming stages). Especially, Porthole die for producing condenser tube is very complex. Thus, in order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible. This paper describes FE analysis of non-steady state porthole die extrusion for producing condenser tube with multi-hole through 3D simulation in the non-steady state during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion load. Also to validate FE simulation of porthole die extrusion, a comparison of simulation and experiment results was presented in this paper.

Die stress and Process of Analysis for Condenser Tube Extrusion by using a Porthole Die (포트홀 다이를 이용한 컨덴서 튜브 직접압출 공정해석 및 금형강도 해석)

  • Lee, J. M.;lee, S. K.;Kim, B. M.;Jo, H. H.;Jo, H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1030-1033
    • /
    • 2002
  • In this study, it is important that we have an understanding of the metal flow for manufacturing condenser tube in porthole die extrusion, because this need to provide for household appliances market that is expected to grow into the major market of the cooling system hereafter. Condenser tube is mainly manufactured by conform exclusion. However, this method was not satisfied a series of the needs for manufacturing condenser tube as compared with porthole die extrusion. The deforming skill recently is required high-productivity, high-accuracy and reducing lead-time, thus it is essential to substitute conform exclusion by porthole die exclusion. Porthole die extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process consists of three stages(dividing, welding and forming stages). In order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion lead, and therm stress analysis was practiced to obtain effective stress and elastic deformation value. A analytical results provide useful information the optimal design of the porthole die for condenser tube.

  • PDF