• Title/Summary/Keyword: Condenser Design

Search Result 222, Processing Time 0.04 seconds

An Experimental Study on the Utilization of Heat Pipes for Solar Water Heaters (히이트파이프를 이용한 태양열 온수급탕 시스템에 관한 기초 실험 연구)

  • Chun, Won-Gee;Kang, Yong-Heack;Jeon, Myung-Seok;Kwak, Hee-Youl
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.3-11
    • /
    • 1995
  • This paper reports the performance of solar domestic hot water systems manufactured with heat pipes. A series of tests were conducted on a number of systems to elicit the most suitable configuration of the system for possible commercialization in Korea. The heat pipe is made with a copper tube and the respective length of the evaporator, adiabatic, and condenser sections are 1700mm, 100mm and 200mm. The evaportor section is finned with a copper plate to increase solar input for its proper operation as a heat pipe. Results show quite an interesting performance data stemming from the difference in working fluids, presence of wick, and other various design parameters associated with the collection and utilization of solar energy.

  • PDF

The characteristics of nuclear powered submarine and the use of enriched uranium (원자력 추진 잠수함의 특성과 농축우라늄 사용)

  • Jang, Jun-Seop
    • Strategy21
    • /
    • s.41
    • /
    • pp.261-293
    • /
    • 2017
  • Nuclear power is a way of attaining an enormous amount of energy with relatively small amount of resources and after it has been introduced to the submarine since 1954, there are approximately 150 of nuclear powered submarine currently on a mission around the world. This is due to the maneuverability, mountability and covertness of nuclear submarines. However, there are other tasks, not only the high level of nuclear technology that are needed to be dealt with in order to construct nuclear powered submarine. The biggest task of all is to secure the enriched uranium. Accordingly, this research is about the way of enriching and securing the nuclear fuel that are used in the nuclear submarine with the characteristics, merits and demerits of the nuclear submarine. Due to the fact that the pressurized water reactor in South Korea is the reactor that was originally built for the development of nuclear powered submarine, many parts is designed to be suitable for the submarine propulsion. However, in order to apply this to submarine it is needed to consider additional requests such as the position of reactor, accident-coping system, radioactive covering, reactor output adjustment and ship's pitch and roll in order to apply this to submarine. Nuclear submarines have much higher speed based on the powerful propulsion in comparison with diesel-electric submarine and also have bigger loading area. Besides, there is no need to snorkel and they also have advantages in covertness with the multi-noise proof system. The nuclear technology in South Korea has seen the dramatic development since 1962 and in 1998 reached to the level that we have succeeded in the localization of nuclear plant and exported the world-class one-piece small-sized reactor (SMART) to UAE. To operate these reactors, we import the whole quantity of low-enriched uranium and having our own uranium enrich facility is not probable because of the budget and international regulations. With the ROK/US nuclear agreement revised on 2015 November, the enrichment of uranium that are available without special permission has changed up to 20%. According to the assumption that we use the 20% enrichment of Uranium on U.S. virginia class submarine, it is necessary to change the fuel after 11 years and it will cause additional cost of 1 billion dollars. But the replace period by the uranium's enrichment rate is not fixed so that it is possible to change according to the design of reactor. Therefore, I would like to make a suggestion on two types of design concepts of nuclear submarine that can be operated for 30 years without nuclear fuel change by using the 20% enriched uranium from ONNp.First of all, it is possible by increasing the size of reactor by 3 times and it results in the 1,000t increase of the weight. And secondly, it is by designing the one piece reactor to insert devices such as steam turbine, condenser into the inside of nuclear core like the Rubis class submarines of France.

Design of the Condenser and Automation of a Solar Powered Water Pump (태양열 물펌프의 운전 자동화 설계)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;Lee Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.3
    • /
    • pp.141-154
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which the electrical power is not available. The average so]ar radiation energy is 3.488 kWh/($m^2{\cdot}day$) in Korea. In this study, the automatic control logic and system of the water pump driven by the radiation energy were studied, designed, assembled, tested and analyzed for realizing the solar powered water pump. The experimental system was operated automatically and the cycle was continued. The average quantity of the water pumped per cycle was about 5,320 cc. The cycle time was about 4.9 minutes. The thermal efficiency of the system was about $0.030\%$. The pressure level of the n-pentane vapour in flash tank was 150$\%$450 hPa(gauge) which was set by the computer program for the control of the vapour supply. The pressure in the condenser and air tank during cycles was maintained as about 600 hPa and 1,200 hPa respectively. The water could be pumped by the amount of 128kg/($m^2{\cdot}day$) with the efficiency of $0.1\%$ and the pumping head of 10 m for the average solar energy in Korea.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

Power Optimization of Organic Rankine-cycle System with Low-Temperature Heat Source Using HFC-134a (저온 열원 HFC-134a 유기랭킨사이클의 출력 극대화)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • In this study, an organic Rankine-cycle system using HFC-134a, which is a power cycle corresponding to a low-temperature heat source, such as that for geothermal power generation, was investigated from the view point of power optimization. In contrast to conventional approaches, the heat transfer and pressure drop characteristics of the working fluid within the heat exchangers were taken into account by using a discretized heat exchanger model. The inlet flow rates and temperatures of both the heat source and the heat sink were fixed. The total heat transfer area was fixed, whereas the heat-exchanger areas of the evaporator and the condenser were allocated to maximize the power output. The power was optimized on the basis of three design parameters. The optimal combination of parameters that can maximize power output was determined on the basis of the results of the study. The results also indicate that the evaporation process has to be optimized to increase the power output.

A Study on the Improvement for Cycle Efficiency of Closed-type OTEC (폐쇄형 해양온도차발전 사이클 효율 향상 방안)

  • Lee, Ho-Saeng;Kim, Hyeon-Ju;Jung, Dong-Ho;Moon, Deok-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A study on the improvement for cycle efficiency of closed-type ocean thermal energy conversion (OTEC) was studied to obtain the basic data for the optimal design of cycle. For that, OTEC cycle with a generator, a reheater and a multi-turbine was simulated and analyzed. The basic thermodynamic model for OTEC is Rankine cycle and the surface seawater of $26^{\circ}C$ and deep seawater of $5^{\circ}C$ were used for the heat source of evaporator and condenser, respectively. Ammonia is used as the working fluid. The cycle efficiency increased when generator is added with 0.9 generator effectiveness. When the reheater and multi-turbine are applied in the basic cycle, the cycle efficiency showed 3.14% and the capacity of heat exchanger decreased for same total cycle power. For the OTEC cycle with the generator, the reheater and the multi-turbine showed the highest cycle efficiency and increased the efficiency by more than 6.5% comparing with the basic OTEC cycle.

Design and embodiment of stable system by change of action waveform by pulsemodule special quality of pulse style$CO_2$ laser for obstetrics and gynecology (산부인과용 펄스형 $CO_2$레이저의 펄스모듈 특성과 동작파형 변화에 따른 안정된 시스템의 설계 및 구현)

  • Kim, Whi-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • [ $CO_2$ ] laser sees that is most suitable to get this effect through minimum formation damage and advantage that is root enemy of effect that happen in minimum cellular tissue depth of 0.1mm is stable living body organization or internal organs institution. Formation damage by ten can be related in formation's kind or energy density, length of evaporation time. If shorten evaporation time, surroundings cellular thermal damage 200 - because happen within 400um laser beam in rain focus sacred ground surroundings cellular tissue without vitiation me by evaporation Poe of very small floor as is clean steam can . Application is possible to vulva cuticle cousins by a paternal aunt quantity, uterine cancer, cuticle tumor by laser system that $CO_2$ laser gets into standard in obstetrics and gynecology application. Because effect that super pulse output is ten enemies of laser if uniformity one pulse durations are short almost is decreased, most of all pulse module special quality of Pulse style $CO_2$ laser for obstetrics and gynecology mode stabilization by weight very, in this research to get into short pulse duration and higher frequency density, do switching by high frequency in DC-DC Converter output DC's ripple high frequency to be changed, high frequency done current ripple amount of condenser for output filter greatly reduce can . Ripple of output approximately to Zero realization applying possible inductor realization through a special quality experiment do.

  • PDF

An Experimental Study on Performance of Vapor Compression Refrigeration Cycle with Al2O3 nano-particle (Al2O3 나노 입자를 적용한 증기 압축 냉동 사이클의 성능)

  • Kim, Jeongbae;Lee, Kyu-Sun;Lee, Geunan
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.124-129
    • /
    • 2015
  • An experimental study was performed estimating COP(Coefficient of Performance) of air-conditioning cycle using inverter scroll compressor with and without $Al_2O_3$ nano particle. All experiments were done for various compressor speeds from 1000~4000 rpm and used the inverter controller called CANDY to change the compressor rpm. The air-conditioning cycle components in the apparatus were used as same with components of YF hybrid car. To estimate the COP, this study measured the temperature and pressure at inlets and outlets of compressor, condenser, and evaporator. And also measured the compressor input power using Powermeter. Through the experiments, the maximum error to estimate COP was shown about ${\pm}6.09%$ at 3500rpm. The COP of refrigeration cycle with $Al_2O_3$ nano-particle was similar with that of the base cycle without nano-particle between 1000~3000 rpm of the compressor speed. But, This study showed that the COP of the cycle with $Al_2O_3$ over 3000 rpm of the compressor speed was higher than that of the base cycle due to the higher heat transfer rate increased in the evaporator from the higher oil flow rate inside the cycle as well known. Those results can be used the basic and fundamental data to design the air-conditioning cycle using inverter scroll compressor with $Al_2O_3$ nano particle.

Recovery of Silver and Nitric Acid in the Liquid Waste Resulted from the Mediated Electrochemical Oxidation Process (전기화학적 매개산화공정 폐액에서 은 및 질산의 회수)

  • 최왕규;김영민;이근우;박상윤;오원진
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.17-26
    • /
    • 1998
  • A study on the recovery of silver and nitric acid in the liquid waste resulted from the mediated electrochemical oxidation(MEO) process was conducted. The removal of silver in the concentrated nitric acid solutions was carried out by the electrodeposition. The removal efficiency more than 98% could be obtained in nitric acid concentrations less than 3 M with the current efficiency of nearly 100%. The experimonts on the evaporation for the recovery of nitric acid were performed as well. At the evaporation factor of 25., the degree of nitric acid recovery in 3.5 M nitric acid solution containing 0.5 to 1.0 mol% NaNO, was 80~90% resulting in 2.8~3.1 M nitric acid. The design factors and operating conditions of the distillation tower were analyzed by using MEH model derived by Maphtali-Sandholm with the throughput of 4 kg/hr for the enrichment of dilute nitric acid solution recovered by evaporation to reuse in the MEO process. The distillation column composed of eleven theoretical stages having the overall tray efficiency of 70% are needed to obtain 1.03 kg/h of 12M nitric acid and 2.97 kg/h of water with feed being introduced to the column at tray 6 from the bottom at the reflux ratio of 0.25, the reboiler with the heat load of 2.7 kW, and the condenser with the cooling load of 0.5 kW.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.