• Title/Summary/Keyword: Condensate

Search Result 190, Processing Time 0.029 seconds

Studies on Photosensitive Polymers (X). Studies on Photosensitivity and Spectral Sensitivity of Naphthoquinone-1,2-diazide-5-sulfonyl Esters (感光性 樹脂에 關한 硏究 (第10報). Naphthoquinone-1,2-diazide-5-sulfonyl Esters의 感光性과 分光感度)

  • Shim Jyong Sup;Kang Doo Whan
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.269-279
    • /
    • 1975
  • Photosensitive properties of naphthoquinone-1,2-diazide-5-sulfonyl esters (PGND, BEND and PVAND) of polyglyceryl phthalate(PG), bisphenol A-epichlorohydrin condensate(BE) and polyvinyl alcohol(PVA) were investigated by the change of solubility before and after exposing to light. Various samples coated on glass or quartz plates were exposed to light under various conditions and steeped in aqueous alkali solution, and then the yield of residual film(W/W0) was determined. The yield of residual film, which was closely related to the sensitivity of the film, was affected by the degree of polymerization of the backbone resin, sensitizers and their concentration. In polymer homologs, the sensitivity was dependent on the degree of polymerization(the higher, the better). And also, it was most effective when 5 % of sensitizers to esters was used. The minimum exposed time was 0.6 min. for PGND-1, 1.0 min. for BEND-1, and 3.0 min. for PVAND-1. Most effective sensitizers for PGND, BEND and PVAND among those used here were benzanthrone, 5-nitroacenaphthene and picramide, respectively. The spectral sensitivities of PGND, BEND and PVAND were examined by comparing their spectrograms with UV-spectra in a solid state. Also, the sensitization and spectral sensitivity of the above polymers were studied. All the polymers containing the sensitizers showed optical sensitization. From the fact that in either case of sensitized or unsensitized sample, the ranges of absorption-maximum wave length were almost consistent with sensitivity maximum wave length, it was proved that the light absorbed by a sample served efficiently for photochemical reactions. Benzanthrone was found to be an excellent sensitizer for PGND.

  • PDF

Analysis of Protease and Antiprotease Concentrations in Retired Workers Exposed to Inorganic Dusts

  • Shin, Jae-Hoon;Hwang, Joo-Hwan;Lee, Kyung-Myung;Lee, Jong-Seong;Lee, Jeong-Oh;Choi, Byung-Soon;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.309-317
    • /
    • 2009
  • Occupational exposure to inorganic dusts such as coal and silica has been identified as a chronic obstructive pulmonary disease (COPD) risk factor. This risk factor causes lung inflammation and protease-antiprotease imbalance. This abnormal inflammatory response of the lung induces parenchymal tissue destruction and leads to progressive airflow limitation that is characteristics of COPD. The aim of this study was to determine the relationship of proteases such as neutrophil elastase (NE) and matrix metalloproteinase (MMP)-9 and antiproteases such as alpha-1 antitrypsin (AAT) and tissue inhibitors of metalloproteinase (TIMP)-1 with lung function. The study population contained 223 retired workers exposed to inorganic dusts. We performed lung function test, including percent of forced expiratory volume in one second ($%FEV_1$) predicted and $%FEV_1$/forced vital capacity (FVC). We analyzed serum MMP-9, AAT, TIMP-1 and plasma NE concentrations by sandwich enzyme immunoassay. NE, AAT, and TIMP-1 concentrations in workers, who had $%FEV_1$<80% predicted, were higher than those of workers who had $%FEV_1{\geq}80%$ (P<0.05). Both AAT and TIMP-1 concentrations in workers with airflow limitation were higher than those of workers with normal airflow (P<0.05). $%FEV_1$ predicted showed significant negative correlation with AAT (r=-0.255, P<0.0l), TIMP-1 (r=-0.232, P<0.01), and NE (r=-0.196, P<0.01). $%FEV_1$/FVC predicted showed significant negative correlation with NE (r=-0.172, P<0.05). From the results of stepwise multiple regression analysis about $%FEV_1$ and $%FEV_1$/FVC, significant independents were NE (r=-0.135, P=0.001) and AAT (r=-0.100, P=0.013) in $%FEV_1$, and NE (r=-0.160, P=0.014) in $%FEV_1$/FVC. In the present study, there were significant correlations between airflow limitation and protease concentration and between airflow limitation and antiprotease concentration. Serum protease and antiprotease concentrations, however, may be affected by the biological and inflammatory responses. It is necessary to evaluate specimens more reflected the effects of proteases and antiproteases in the lung such as lung tissue, bronchoalveolar lavage fluid, and exhaled breath condensate (EBC).

  • PDF

Treatment of Wastewater Containing Ethanolamine from Coolant of the Secondary System of Nuclear Power Plant by UV/GAC Adsorption Oxidation Method (UV/GAC 흡착산화 공법을 이용한 원자력 발전소 2차 계통 냉각수로부터 발생하는 에탄올 아민 함유 폐수처리)

  • Choi, Min Jun;Kim, Hansoo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.318-325
    • /
    • 2017
  • Wastewater including ethanolamine used in the second generation of nuclear power plants is filtered out in the ion exchange resin of the condensate polishing plant. In the regeneration process of ion exchange resin, a strong acidic wastewater containing ethanolamine and a lager amount of ionic substances are released. In this study, the process involving UV oxidation part with or without absorbents was developed for treating wastewater released from the ionic exchange resin. The effect of adsorbents on the wastewater treatment was investigated by using UV oxidation system developed by us. As a result, the COD removal efficiency of UV/GAC process with the granular activated carbon (GAC) as an adsorbent was 71.3% at pH 12.8. The removal efficiency was 21.8% higher than that of the wastewater treated using UV oxidation process without any adsorbents at the same condition. The removal of T-N was 88.6% at pH 12.8 when using UV oxidation with the GAC absorbent, which was 18.0% higher than that of using the UV oxidation process without any absorbents. It is thought that ethanolamine adsorbed on the absorbent improved the efficiency of UV oxidation process. Therefore, the UV/GAC adsorption oxidation process can be more effective in treating wastewater containing ethanolamine than that of using the process without any absorbents.

Screening Method for Flow-induced Vibration of Piping Systems for APR1400 Comprehensive Vibration Assessment Program (APR1400 종합진동평가를 위한 배관시스템의 유동유발진동 간이평가)

  • Ko, Do-Young;Kim, Dong-Hak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.599-605
    • /
    • 2015
  • The revised U.S. Nuclear Regulatory Commission(NRC), Regulatory Guide(RG) 1.20, rev.3 requires the evaluation of the potential adverse effects from pressure fluctuations and vibrations on piping and components for the reactor coolant, steam, feedwater, and condensate systems. Detailed vibration analyses for the systems attached to the steam generator are very difficult, because these piping systems are very complicated. This paper suggests a screening method for the flow-induced vibration of acoustic resonances and pump-induced vibration of the piping systems attached to the steam generator in order to conduct the APR1400 comprehensive vibration assessment program. This paper seeks to address the areas such as potential vibration sources, and methods to prevent the occurrence of acoustic resonances and pump-induced vibration of piping systems attached to the steam generator, for conducting the APR1400 comprehensive vibration assessment program. The screening method in this paper will be used to estimate the flow-induced vibration of the piping systems attached to the steam generator for the APR1400.

Tritium Distribution in Leachates from Domestic Solid Waste Landfills (생활폐기물 매립장 침출수의 삼중수소 분포)

  • Park, Soon Dal;Kim, Jung Suk;Joe, Kih Soo;Kim, Jong Gu;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.251-262
    • /
    • 2004
  • It is for the purpose of investigating the tritium distribution in the leachates, the raw and treated leachates and the condensates of the methane gas, which have occurred from domestic solid waste landfills. Also it aims to measure the tritium distribution level on the colloid size of the leachates, the raw and treated leachates. It was found that the major inorganic contaminants of the leachates were Na, K, Ca, Mg, $NH{_4}^+$-N and $Cl^-$. The mean tritium level of the raw leachates of the investigated 13 landfill sites for 6 months was 17 ~ 1196 TU. It corresponded to a several scores or hundreds of magnitude higher value than that of the normal environmental sample level except for two landfill sites. Also such a high concentration of the tritium was found in the treated leachates and methane gas condensates as well. Nevertheless it is important to emphasize that the tritium level which was found in this research is about 100 times lower than the tritium limit for the drinking water quality. And most of the tritium existed in the dissolved colloid of the leachate of which the colloid size is below $0.45{\mu}m$. Also, according to the tritium analysis results of the leachates after filtration with $0.45{\mu}m$ membrane filter for some landfills, it is likely that some tritium of the leachate would be distributed in a colloid size over $0.45{\mu}m$. In general the relationship between the tritium and other contaminants in the raw leachate was low, but it was relatively high between the tritium and TOC. However, the tritium content in the leachate had no meaningful relationship with the scale, hydrological characteristics and age of the landfill.

MANAGING A PROLONGED STATION BLACKOUT CONDITION IN AHWR BY PASSIVE MEANS

  • Kumar, Mukesh;Nayak, A.K.;Jain, V;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.605-612
    • /
    • 2013
  • Removal of decay heat from an operating reactor during a prolonged station blackout condition is a big concern for reactor designers, especially after the recent Fukushima accident. In the case of a prolonged station blackout condition, heat removal is possible only by passive means since no pumps or active systems are available. Keeping this in mind, the AHWR has been designed with many passive safety features. One of them is a passive means of removing decay heat with the help of Isolation Condensers (ICs) which are submerged in a big water pool called the Gravity Driven Water Pool (GDWP). The ICs have many tubes in which the steam, generated by the reactor core due to the decay heat, flows and condenses by rejecting the heat into the water pool. After condensation, the condensate falls back into the steam drum of the reactor. The GDWP tank holds a large amount of water, about 8000 $m^3$, which is located at a higher elevation than the steam drum of the reactor in order to promote natural circulation. Due to the recent Fukushima type accidents, it has been a concern to understand and evaluate the capability of the ICs to remove decay heat for a prolonged period without escalating fuel sheath temperature. In view of this, an analysis has been performed for decay heat removal characteristics over several days of an AHWR by ICs. The computer code RELAP5/MOD3.2 was used for this purpose. Results indicate that the ICs can remove the decay heat for more than 10 days without causing any bulk boiling in the GDWP. After that, decay heat can be removed for more than 40 days by boiling off the pool inventory. The pressure inside the containment does not exceed the design pressure even after 10 days by condensation of steam generated from the GDWP on the walls of containment and on the Passive Containment Cooling System (PCCS) tubes. If venting is carried out after this period, the decay heat can be removed for more than 50 days without exceeding the design limits.

A Technical Note on Monitoring Methods for Volcanic Gases (화산가스의 채취 및 분석에 대한 기술보고)

  • Lee, Seungyeol;Lee, Sangchul;Yang, Kyounghee;Jeong, Hoon Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.415-429
    • /
    • 2012
  • The monitoring methods for volcanic gases are divided into remote sensing and direct gas sampling approaches. In the remote sensing approach, COSPEC and Li-COR are used to measure $SO_2$ and $CO_2$, respectively, with FT-IR for detection of a range of volcanic gases. However, the remote sensing approach is not applicable to Mt. Baegdu, where the atmospheric contents of volcanic gases are very low as a result of the strong interaction of volcanic gases with the nearby surface water and groundwater. On the other hand, the direct gas sampling approach involves the collection of volcanic gases from volcanic vents or fumaroles and the subsequent laboratory analysis, thus making it possible to measure even very low levels of volcanic gases. The direct sampling approach can be subdivided into the evacuated bottle method and the flow-through bottle method. In applying both methods, sampling bottles typically contain reaction media to trap specific volcanic gases. For example, NaOH solution(Giggenbach bottle), $NH_4OH$ solution, and acid condensates have been experimented for volcanic gas sampling. Once taken from vents and fumaroles, the samples of volcanic gases are pretreated and subsequently analyzed for volcanic gases using GC, IC, HPLC, titrimetry, TOC-IC, or ICP-MS. Recently, there has been the increasing number of evidences on the potential volcanic activity of Mt. Baegdu. However, little technical development has been made for the sampling and analysis of volcanic gases in Korea. In the present work, we reviewed various volcanic gas monitoring methods, and provided the detailed information on the monitoring methods applied to Mt. Baegdu.

Characteristics of Nutrient Removal and Membrane Fouling in a Membrane Bioreactor using Food Waste as an Additional Carbon Source (음식폐기물 응축수를 보조탄소원으로 이용하는 막 결합 생물 응조에서의 질소, 인 제거와 막 오염 특성)

  • Ahn, Young-Tae;Youn, Jong-Ho;Chae, So-Ryong;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.519-524
    • /
    • 2005
  • Due to the low C/N ratio of domestic wastewater characteristic, addition of external carbon source for the effective N and P removal is necessary. High organic content of food waste can be used for the external carbon source in biological nutrient removal processes, The applicability of condensate of food waste (CFW), which is produced during the high-rate fermentation process, was examined in membrane bioreactor for the nutrient removal. Under the various operating conditions, nutrient removal efficiencies and membrane fouling characteristics were evaluated using synthetic wastewater. From nitrate utilization rate (NUR) test, denitrification rate was 0.19 g $NO_3-N/g$ VSS/day. With the addition of CFW increased, average removal efficiencies of T-N and T-P could be increased up to 64% and 41%, respectively. Also the optimal retention time was 3 hr/5 hr for anoxic/aerobic reactor. When applied to real sewage, membrane fouling resistance was increased up to 60%, which could be reduced from $10.4{\times}10^{12}m^{-1}$ to $5.9{\times}10^{12}m^{-1}$ with the control of influent suspended solid concentration. In summary, it was suggested that CFW could be used as an economical and effective carbon source for membrane assisted biological N and P removal.

Analysis of Structure and Physical and Chemical Properties of the Carbonized Pine Wood (Pinus densiflora Sieb. et Zucc.) Materials - Pyrolytic Behavior of Pine Wood Dust - (가열처리 및 탄화처리 소나무재(Pinus densiflora Sieb. et Zucc.)의 구조 및 물리·화학적 특성(III) - 소나무재 톱밥의 열분해 반응 -)

  • Lee, In-Ja;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.266-274
    • /
    • 2014
  • To extend the understanding of the pyrolysis mechanism of wood, we have investigated wood dust charcoal and condensate of volatile organic compounds (VOC) obtained during the pyrolysis of red pine (Pinus densiflora Sieb. et Zucc.) at $180{\sim}450^{\circ}C$ using elemental analysis, IR and GC/Mass. The effect of activation process on the charcoal structure also has been studied by comparing elemental analysis and IR data of charcoal carbonated at $600^{\circ}C$ and charcoals activated at $750^{\circ}C$. The results show that pyrolysis of wood has mainly started near at $240^{\circ}C$ and its chemical components did not changed much up to $270^{\circ}C$. However, the element contents and IR spectra drastically changed at $300^{\circ}C$. The fact that IR peaks related to the aromatic ring of lignin are observed in the charcoal pyrolized at $450^{\circ}C$ indicates that a small part of lignin still remains at this temperature. The chemical structure of the activated charcoal seems almost unaffected by the activation time.

Estimation of Characteristics Treatment for Food Waste with Blast Volume and Preheating of Air using Bio-Drying Process (Bio-drying 공법 활용 공기 투입 및 예열에 따른 음식물류 폐기물 분해 특성 평가)

  • Park, Seyong;Lee, Wonbea
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.15-25
    • /
    • 2022
  • In this study, the efficiency of treatment of moisture and organic matter in food waste was analyzed according to the air blast volume and preheating using the bio-drying method. Te mount of air blast volume and preheating were determined by the evaluation of temperature and CO2 during food waste treatment using the bio-drying method. As a results, the increase in the air blast volume increased the moisture removal efficiency and removal rate, but, lowered the temperature inside the bio-drying by the decease in microbial activity. In order to maintain the activity of microorganisms, it was estimated that it was necessary to inject an appropriate air blast rate according th the properties of the food waste. In this study, the injection of air blast volume at 15L/min was optimal. It was evaluated that the organic matter and water removal rates according to the presence or absence of air preheating, the organic matter removal rate and water removal rate increased by 3-5% when air preheating was not performed. Also, there was no internal aggregation caused by the generation of condensate inside the bio-drying. Therefore, for effective bio-drying of food waste, it is necessary to maintain an appropriate air blast volume to maintain microbial activity, and it is considered that injection through preheating of air is required.