• Title/Summary/Keyword: Concurrent Subspace Optimization

Search Result 4, Processing Time 0.018 seconds

Improved Concurrent Subspace Optimization Using Automatic Differentiation (자동미분을 이용한 분리시스템동시최적화기법의 개선)

  • 이종수;박창규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.359-369
    • /
    • 1999
  • The paper describes the study of concurrent subspace optimization(CSSO) for coupled multidisciplinary design optimization (MDO) techniques in mechanical systems. This method is a solution to large scale coupled multidisciplinary system, wherein the original problem is decomposed into a set of smaller, more tractable subproblems. Key elements in CSSO are consisted of global sensitivity equation(GSE), subspace optimization (SSO), optimum sensitivity analysis(OSA), and coordination optimization problem(COP) so as to inquiry valanced design solutions finally, Automatic differentiation has an ability to provide a robust sensitivity solution, and have shown the numerical numerical effectiveness over finite difference schemes wherein the perturbed step size in design variable is required. The present paper will develop the automatic differentiation based concurrent subspace optimization(AD-CSSO) in MDO. An automatic differentiation tool in FORTRAN(ADIFOR) will be employed to evaluate sensitivities. The use of exact function derivatives in GSE, OSA and COP makes Possible to enhance the numerical accuracy during the iterative design process. The paper discusses how much influence on final optimal design compared with traditional all-in-one approach, finite difference based CSSO and AD-CSSO applying coupled design variables.

  • PDF

Improvement of Sensitivity Based Concurrent Subspace Optimization Using Automatic Differentiation (자동미분을 이용한 민감도기반 분리시스템동시최적화기법의 개선)

  • Park, Chang-Gyu;Lee, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.182-191
    • /
    • 2001
  • The paper describes the improvement on concurrent subspace optimization(CSSO) via automatic differentiation. CSSO is an efficient strategy to coupled multidisciplinary design optimization(MDO), wherein the original design problem is non-hierarchically decomposed into a set of smaller, more tractable subspaces. Key elements in CSSO are consisted of global sensitivity equation, subspace optimization, optimum sensitivity analysis, and coordination optimization problem that require frequent use of 1st order derivatives to obtain design sensitivity information. The current version of CSSO adopts automatic differentiation scheme to provide a robust sensitivity solution. Automatic differentiation has numerical effectiveness over finite difference schemes tat require the perturbed finite step size in design variable. ADIFOR(Automatic Differentiation In FORtran) is employed to evaluate sensitivities in the present work. The use of exact function derivatives facilitates to enhance the numerical accuracy during the iterative design process. The paper discusses how much the automatic differentiation based approach contributes design performance, compared with traditional all-in-one(non-decomposed) and finite difference based approaches.

Development of System Analysis for the Application of MDO to Crashworthiness (자동차 충돌문제에 MDO를 적용하기 위한 시스템 해석 방법 개발)

  • 신문균;김창희;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.210-218
    • /
    • 2003
  • MDO (multidisciplinary design optimization) technology has been proposed and applied to solve large and complex optimization problems where multiple disciplinaries are involved. In this research. an MDO problem is defined for automobile design which has crashworthiness analyses. Crash model which are consisted of airbag, belt integrated seat (BIS), energy absorbing steering system .and safety belt is selected as a practical example for MDO application to vehicle system. Through disciplinary analysis, vehicle system is decomposed into structure subspace and occupant subspace, and coupling variables are identified. Before subspace optimization, values of coupling variables at given design point must be determined with system analysis. The system analysis in MDO is very important in that the coupling between disciplines can be temporary disconnected through the system analysis. As a result of system analysis, subspace optimizations are independently conducted. However, in vehicle crash, system analysis methods such as Newton method and fixed-point iteration can not be applied to one. Therefore, new system analysis algorithm is developed to apply to crashworthiness. It is conducted for system analysis to determine values of coupling variables. MDO algorithm which is applied to vehicle crash is MDOIS (Multidisciplinary Design Optimization Based on Independent Subspaces). Then, structure and occupant subspaces are independently optimized by using MDOIS.

Comparison of MDO Methodologies With Mathematical Examples (수학예제를 이용한 다분야통합최적설계 방법론의 비교)

  • Yi S.I.;Park G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.822-827
    • /
    • 2005
  • Recently engineering systems problems become quite large and complicated. For those problems, design requirements are fairly complex. It is not easy to design such systems by considering only one discipline. Therefore, we need a design methodology that can consider various disciplines. Multidisciplinary Design Optimization (MDO) is an emerging optimization method to include multiple disciplines. So far, about seven MDO methodologies have been proposed for MDO. They are Multidisciplinary Feasible (MDF), Individual Feasible (IDF), All-at-Once (AAO), Concurrent Subspace Optimization (CSSO), Collaborative Optimization (CO), Bi-Level Integrated System Synthesis (BLISS) and Multidisciplinary Optimization Based on Independent Subspaces (MDOIS). In this research, the performances of the methods are evaluated and compared. Practical engineering problems may not be appropriate for fairness. Therefore, mathematical problems are developed for the comparison. Conditions for fair comparison are defined and the mathematical problems are defined based on the conditions. All the methods are coded and the performances of the methods are compared qualitatively as well as quantitatively.

  • PDF