• 제목/요약/키워드: Concretes

검색결과 642건 처리시간 0.025초

폐콘크리트 재활용에 있어서 강도특성상의 문제점 (Problems in Strength Characteristics of Recycled Waste Concrete)

  • 김광우;연규석;이병덕
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.44-49
    • /
    • 1992
  • Selected strength characteristics of recycled concrete using crushed waste concrete were compared with those of conventional concrete using natural aggregate. Compressive strength, bonding at the interface between recycled aggregate and fresh mortar, strain and deflection under three-point bending were evaluated. Recycled concrete, in general, showed lower compressive strength, lower edlastic modulus, higher stain and higher deflection under the same loading level, compared with those of conventional concretes. However, the strength retaining ratios of recycled concretes were higher than those of conventional concretes. The compressive strength which is one of the most important load carrying capacities of concrete should be improved for successful re-use of waste concrete in structural concrete.

중질탄산칼슘 슬러리를 활용한 콘크리트의 기초적 물성 (A Fundamental Properties of Concrete Using the Ground Calcium Carbonate Slurry)

  • 문한영;정호섭;최두선;양은철;유지훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.475-480
    • /
    • 2001
  • Mechanical properties of mortars and concretes blended with GCC(Ground Calcium Carbonate slurry) and silica fume were investigated. Results from this study showed that air contents of mortars were constant regardless of replacement of GCC and flow values of mortars were decreased with replacement of it. Especially, mortars and concretes replaced with 10% of GCC had a good trend with respect to compressive strength. In case of simultaneous use of GCC and silica fume, the workability and compressive strength of the concretes seem not to be any problems in mechanical properties. This study indicated that the most reasonable replacement of GCC was 10% and the addition as fine aggregate was more effective than that as binder.

  • PDF

재생골재를 함유한 무잔골재 콘크리트의 강도특성 (Strength Characteristics of No-Fine Concrete Containing Recycled Aggregates)

  • 김태근;이광명;김낙경;고용일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.1-6
    • /
    • 1998
  • Recently, as to destruction and renovation of aged building, waste concretes have been reclaimed near foreshore and filled up underground. Recycling demolished concrete as aggregate helps to settle economic and environmental problems of obtaining superior aggregates from natural sources and to dispose waste concretes. An experimental study was carried out to investigate the strength characteristics of no-fine concrete containing recycled aggregates. The cement-aggregate weight ratios of 1: 5, 1: 6, 1: 7 and water-cement ratios of 30, 35, 40, 45% were chosen for the mix design of no-fine concretes. The compressive and splitting tensile strength at 7 and 28 days were measured for 12 different mixes. On the basis of test results, the optimum mix proportion of no-fine concrete containing recycled aggregates was determined and applied to the production of retaining wall block.

  • PDF

Simulation of chloride penetration into concrete structures subjected to both cyclic flexural loads and tidal effects

  • Mien, Tran Van;Stitmannaithum, Boonchai;Nawa, Toyoharu
    • Computers and Concrete
    • /
    • 제6권5호
    • /
    • pp.421-435
    • /
    • 2009
  • Chloride induced corrosion is a concern that governs the durability of concrete structures in marine environments, especially in tidal environments. During the service lives of concrete structures, internal cracks in the concrete cover may appear due to imposed loads, accelerating chloride penetration because of the simultaneous action of environmental and service structural loads. This paper investigated the effects of cyclic flexural loads on chloride diffusion characteristics of plain concretes, and proposed a model to predict the chloride penetration into plain concretes subjected to both tidal environments and different cyclic flexural load levels. Further, a new experiment was performed to verify the model. Results of the model using Finite Difference Method (FDM) showed that the durability of concretes in tidal environments was reduced as cyclic flexural load levels, SR, increased, and the modeling results fitted well with the experimental results.

Mechanical behavior of recycled fine aggregate concrete after high temperature

  • Liang, Jiong-Feng;Wang, En;He, Chun-Feng;Hu, Peng
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.343-348
    • /
    • 2018
  • This paper reports mechanical behavior of recycled fine aggregate concretes after high temperatures. It is found that compressive strength of recycled fine aggregate concretes decline significantly as the temperature rises. The elastic modulus of recycled fine aggregate concretes decreases with the increase in temperature, and the decrease is much quicker than the decrease in compressive strength. The split tensile strength of recycled fine aggregate concrete decrease as the temperature rises. Through the regression analysis, the relationship of the mechanical behavior with temperature are proposed, including the compressive behavior, elastic modulus and split tensile strength, which are fitting the test data.

Kinetics of the water absorption in GGBS-concretes: A capillary-diffusive model

  • Villar-Cocina, E.;Valencia-Morales, E.;Vega-Leyva, J.;Antiquera Munoz, J.
    • Computers and Concrete
    • /
    • 제2권1호
    • /
    • pp.19-30
    • /
    • 2005
  • We study the kinetics of absorption of water in Portland cement concretes added with 60, 70 and 80% of granulated blast furnace slag (GGBS) cured in water and at open air and preheated at 50 and $100^{\circ}C$. A mathematical model is presented that allows describing the process not only in early ages where the capillary sorption is predominant but also for later and long times where the diffusive processes through the finer and gel pores are considered. The fitting of the model by computerized methods enables us to determine the parameters that characterize the process: i.e., the sorptivity coefficient (S) and diffusion coefficient (D). This allows the description of the process for all times and offers the possibility to know the contributions of both, the diffusive and capillary processes. The results show the influence of the curing regime and the preheating temperature on the behavior of GGBS mortars.

Modelling creep of high strength concrete

  • Dias-da-Costa, D.;Julio, E.N.B.S.
    • Computers and Concrete
    • /
    • 제7권6호
    • /
    • pp.533-547
    • /
    • 2010
  • Recent developments in concrete mixing made possible the production of concretes with high compressive strength showing, simultaneously, high workability. These concretes also present high strengths at young ages, allowing the application of loads sooner. It is of fundamental importance to verify if creep models developed for current concrete still apply to these new concretes. First, a FEM-based software was adopted to test available creep models, most used for normal strength concrete, considering examples with known analytical results. Several limitations were registered, resulting in an incorrect simulation of three-dimensional creep. Afterwards, it was implemented a Kelvin-chain algorithm allowing the use of a chosen number of elements, which adequately simulated the adopted examples. From the comparison between numerical and experimental results, it was concluded that the adopted algorithm can be used to model creep of high strength concrete, if the material properties are previously experimentally assessed.

화상분석법을 이용한 라텍스개질 콘크리트의 공극 구조와 투수성의 상관성 분석 (Estimation of Air Void System and Permeability of Latex-Modified Concretes by Image Analysis Method)

  • 정원경;윤경구;홍승호
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.695-702
    • /
    • 2005
  • 라텍스개질 콘크리트는 라텍스의 첨가로 인하여 콘크리트의 내구성을 개선하는 것으로 알려져 있으며, 투수저항성이 크게 향상되는 것으로 연구되었다. 본 연구에서는 SBR 라텍스 혼입에 따른 콘크리트 내부 공극 구조의 변화를 연구하고자 화상분석법을 이용하여 라텍스개질 콘크리트의 W/C비, 라텍스 함량, 시멘트 종류에 변화를 주어 간격계수, 경화 후 공기량, 공극 직경에 따른 공극 분포 및 공극 구조 상태 분석 등을 파악하였다. 또한, 라텍스 첨가에 따른 내부 공극 구조 특성과 투수저항성과의 상관성을 비교하였다. 라텍스개질 콘크리트는 내부 공극 분석 결과, 동일 물-시멘트비 조건에서 AE감수제를 사용한 OPC에 비해 더 우수한 연행공극 효과가 있는 것으로 분석되었다. 초속경시멘트는 $100{\mu}m$ 미만의 연행공극의 수가 4배 이상 증가하였다. 조강 시멘트는 SBR 라텍스로 인하여 $50{\sim}500{\mu}m$ 범위의 미세 연행 공기량이 약 7배 이상 증가되는 현상을 나타내었다. 그러나 투수성에 있어서는 낮은 간격계수에도 불구하고 높은 투수저항 특성을 나타내었다. 내구성에 있어서 라텍스개질 콘크리트에서는 공극 구조의 영향보다는 라텍스 폴리머 필름에 의한 영향이 더 큰 것으로 판단되었다.

폴리머 개질 폐타이어 아스팔트 콘크리트의 특성 연구 (Evaluation of Waste Tire Rubber Asphalt Concrete using Polymer Modified Binders)

  • 김광우;이지용;오성균
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.180-185
    • /
    • 1998
  • The study was conducted to evaluate the fundamental properties of waste tire asphalt concretes using polymer modified hinder that were made by dry process. The specimens of four types of polymer modified asphalt concretes were prepared, then Marshall test and indirect tensile strength tests were performed on these samples. The results showed that polymer modified waste tire rubber asphalt concrete was acceptable for the material of asphalt pavement surface layer.

  • PDF

섬유 혼입 비율에 따른 섬유보강 콘크리트의 재료특성 (Material property of fiber reinforced concrete according to the fiber blended ratio)

  • 박춘근;김남호;이종필;김학연
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.632-635
    • /
    • 2004
  • In this paper, material property of fiber reinforced concrete(FRC) according to the steel fiber, glass fiber and carbon fiber blended ratio. The fiber reinforced concretes are increased mechanical strength, because the fibers are dispersed with randomly direction and disturb crack progression in concretes. Adhesive fracture is occurred slowly at interface between fiber and concrete, and the fracture energy is absorbed due to softening phenomenon.

  • PDF