• 제목/요약/키워드: Concretes

검색결과 637건 처리시간 0.03초

Effects of alkali solutions on corrosion durability of geopolymer concrete

  • Shaikh, Faiz U.A.
    • Advances in concrete construction
    • /
    • 제2권2호
    • /
    • pp.109-123
    • /
    • 2014
  • This paper presents chloride induced corrosion durability of reinforcing steel in geopolymer concretes containing different contents of sodium silicate ($Na_2SiO_3$) and molarities of NaOH solutions. Seven series of mixes are considered in this study. The first series is ordinary Portland cement (OPC) concrete and is considered as the control mix. The rest six series are geopolymer concretes containing 14 and 16 molar NaOH and $Na_2SiO_3$ to NaOH ratios of 2.5, 3.0 and 3.5. In each series three lollypop specimens of 100 mm in diameter and 200 mm in length, each having one 12 mm diameter steel bar are considered for chloride induced corrosion study. The specimens are subjected to cyclic wetting and drying regime for two months. In wet cycle the specimens are immersed in water containing 3.5% (by wt.) NaCl salt for 4 days, while in dry cycle the specimens are placed in open air for three days. The corrosion activity is monitored by measuring the copper/copper sulphate ($Cu/CuSO_4$) half-cell potential according to ASTM C-876. The chloride penetration depth and sorptivity of all seven concretes are also measured. Results show that the geopolymer concretes exhibited better corrosion resistance than OPC concrete. The higher the amount of $Na_2SiO_3$ and higher the concentration of NaOH solutions the better the corrosion resistance of geopolymer concrete is. Similar behaviour is also observed in sorptivity and chloride penetration depth measurements. Generally, the geopolymer concretes exhibited lower sorptivity and chloride penetration depth than that of OPC concrete. Correlation between the sorptivity and the chloride penetration of geopolymer concretes is established. Correlations are also established between 28 days compressive strength and sorptivity and between 28 days compressive strength and chloride penetration of geopolymer concretes.

Recycling and characterization of bone incorporated with concrete for gamma-radiation shielding applications

  • U. Rilwan;G.M. Aliyu;S.F. Olukotun;M.M. Idris;A.A. Mundi;S. Bello;I. Umar;A. El-Taher;K.A. Mahmoud;M.I. sayyed
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2828-2834
    • /
    • 2024
  • This research intends to recycle bone and incorporate it into concrete for radiation shielding application using Phy-X/PSD software. Cement, sand and granite were mixed in proportion of 0.5 kg:1 kg:1 kg to obtain sample A. Other concretes composing of cement, sand, granite and bone ash was in proportion 0.45 kg:1 kg:1 kg:0.05 kg, 0.1 kg:1 kg:1 kg:0.4 kg and 0.35 kg:1 kg:1 kg:0.15 kg to obtain samples B, C and D respectively. 0.5 water-to-cement (W/C) ratio was adopted throughout the mixes because the control mix contain the normal water quantity for normal hydration of cement. Replacing the bone ash for the cement in the fabricated concretes enhances their densities where the fabricated concretes' density decreased from 2.33 g/cm3 to 2.22 g/cm3 by raising the reinforcing bones fly ash concentration from 0 to 0.15 kg. Additionally, increasing the bones fly ash concentration within the fabricated concretes increases their linear attenuation coefficient (LAC) where the fabricated concretes' μ values at 0.662 MeV reach 0.181 cm-1, 0.178 cm-1, 0.174 cm-1, and 0.171 cm-1, respectively for concretes A, B, C, and D. The use of other local materials is recommended, as it improves waste management being the major aim of the sustainable development goal.

콘크리트의 내해수성 시험 (Tests on Durability of Concrete When Exposed to Sea Water)

  • 고재군;황경구
    • 한국농공학회지
    • /
    • 제16권3호
    • /
    • pp.3472-3476
    • /
    • 1974
  • This test was attempted to investigate the effects of some mix designs of concreteon the compressive strengths and corrosive rates when exposed to sea water of the West Sea. In this test, concrete mixes consisted of an ordinary concrete, a pozzolan concrete and concretes with different admixtures such as fly ash, pozzolith and vinsol resin. Compressive strengths of the concrete were measured at ages of 1-year and 2-years when exposed to both sea water and fresh water. Corrosive rate was tested at ages of 1-year and 2-years when exposed to sea water only. The results obtained from the test may be summarized as follows: (1) When all of concretes were exposed to fresh water, compressive strength of an ordinary concrete was the lowest at all mixes of concretes, and all of them showed higher strength as the exposing age is longer. It was evidance that the uses of pozsolan cement, fly ash, pozzolith and vinsol resin in mix design of concrete had an effect on increasing compressive strength and that fresh water also had an effect on curing concretes even though at a long-time age. (2) When concretes were exposed sea water, a concrete with fly ash was the highest in compressive strength and its strength was increasing as the exposing age is longer, but the other concretes were decreased at 2-year exposure. It was found that a concrete with fly ash was the most effective on compressive strength of all concrete, but the other concretes were attacked by action of the sea water. (3) The use of vinsol resin admixture was the most resistant to corrosion by sea water, while the use of pozzolith was the most serious at corrosion and the others were corroded to almost same extent. (4) The relationship between corrosions and compressive strengths of concretes was not clearly correlated yet. It was known that the corrosive rate of concretes could not affect to compressive strengths by 2-year exposure of the sea water. (5) Pozzolan concrete was the most effective in compressive strength when exposed to fresh water only, However, the use of a fly ash admixture was available for compressive strength when exposing to both fresh water and sea water. It was also noticed that the use of vinsol resin was not available for strengths of concrete but for resistance to corrosion when exposed to sea water. (6) It was found that the use of pozzolith was so defective in compressive strengths and corrosiive resistance when exposing to sea water that it was only available for fresh water.

  • PDF

Effect of polymer addition on air void content of fine grained concretes used in TRCC

  • Daskiran, Esma Gizem;Daskiran, Mehmet Mustafa;Gencoglu, Mustafa
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.165-176
    • /
    • 2017
  • Textile Reinforced Cementitious Composite (TRCC) became the most common construction material lately and have excellent properties. TRCC can be employed in the manufacture of thin-walled facade elements, load-bearing integrated formwork, tunnel linings or in the strengthening of existing structures. These composite materials are a combination of matrix and textile materials. There isn't much research done about the usage of polymer modified matrices in textile reinforced cementitious composites. In this study, matrix materials named as fine grained concretes ($d_{max}{\leq}1.0mm$) were investigated. Air entraining effect of polymer modifiers were analyzed and air void content of fine grained concretes were identified with different methods. Aim of this research is to study the effect of polymer modification on the air content of fine grained concretes and the role of defoamer in controlling it. Polymer modifiers caused excessive air entrainment in all mixtures and defoamer material successfully lowered down the air content in all mixtures. Latex polymer modified mixtures had higher air content than redispersible powder modified ones. Air void analysis test was performed on selected mixtures. Air void parameters were compared with the values taken from air content meter. Close results were obtained with tests and air void analysis test found to be useful and applicable to fine grained concretes. Air void content in polymer modified matrix material used in TRCC found significant because of affecting mechanical and permeability parameters directly.

오버레이용 투수성 콘크리트의 개발에 관한 연구 (A Study on the Development of Water-Permeable Concretes for Overlay)

  • 은재기;김완기;조영국;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.223-226
    • /
    • 1999
  • The purpose of this study is no examine the combination effect on strength preperties of water-permeable concretes mixed with redispersible polymer, silica fume and polypropylene fibers for overlay in pavement. The water-permeable concrete with a water-cement ration of 25%, polymer-cement ratios of 0 to 10%, silica fume contents of 0 to 10% and polypropylene fiver contents of 0 to 1.5% are prepared, and tested for flexural strength, compressive strength and water permeability. It is concluded concretes are obtained at a polypropylene fiber content of 1.0% and a silica fume content of 10% with a void filling ratio of 50%. And the water-permeable concretes with a flexural strength of 14.1~28.0kgf/$\textrm{cm}^2$, a compressive strength of 71.2~128.0kgf/$\textrm{cm}^2$, and a coefficient of permeability of 1.22~2.52cm/s at a void filling ratio of 30% can be prepared. Also water-permeable concretes having flexural strength of 24.9~57.9kgf/$\textrm{cm}^2$, a compressive strength of 83.8~268.5kgf/$\textrm{cm}^2$, and a coefficient of permeability of 0.24~1.04cm/s at a void filling ratio of 50% can be prepared in the consideration of the mix proportioning factors.

  • PDF

Evaluation of early age mechanical properties of concrete in real structure

  • Wang, Jiachun;Yan, Peiyu
    • Computers and Concrete
    • /
    • 제12권1호
    • /
    • pp.53-64
    • /
    • 2013
  • The curing temperature is known to influence the rate of mechanical properties development of early age concrete. In realistic sites the temperature of concrete is not isothermal $20^{\circ}C$, so the paper measured adiabatic temperature increases of four different concretes to understand heat emission during hydration at early age. The temperature-matching curing schedule in accordance with adiabatic temperature increase is adopted to simulate the situation in real massive concrete. The specimens under temperature-matching curing are subjected to realistic temperature for first few days as well as adiabatic condition. The mechanical properties including compressive strength, splitting strength and modulus of elasticity of concretes cured under both temperature-matching curing and isothermal $20^{\circ}C$ curing are investigated. The results denote that comparing temperature-matching curing with isothermal $20^{\circ}C$ curing, the early age concretes mechanical properties are obviously improved, but the later mechanical properties of concretes with pure Portland and containing silica fume are decreased a little and still increased for concretes containing fly ash and slag. On this basement using an equivalent age approach evaluates mechanical properties of early age concrete in real structures, the model parameters are defined by the compressive strength test, and can predict the compressive strength, splitting strength and elasticity modulus through measuring or calculating by finite element method the concreted temperature at early age, and the method is valid, which is applied in a concrete wall for evaluation of crack risking.

고로슬래그 미분말을 이용한 SBR혼입 폴리머 시멘트 콘크리트의 강도특성 (Strength Properties of SBR-Modified Concretes Using Ground Granulated Blast-Furnace Slag)

  • 주명기;연규석
    • 콘크리트학회논문집
    • /
    • 제14권3호
    • /
    • pp.315-320
    • /
    • 2002
  • 본 연구에서는 고로슬래그 미분말을 이용한 SBR혼입 폴리머 시멘트 콘크리트의 강도 성상에 미치는 고로슬래그 치환율 및 폴리머 결합재비의 영향에 대하여 구명하였다. 그 결과, 고로슬래그 미분말을 이용한 SBR혼입 폴리머 시멘트 콘크리트의 압축, 인장 및 휨강도는 폴리머-결합재비 및 고로슬래그 치환율의 증가에 따라 증가하였으며, 고로슬래그 치환율 40%에서 가장 높은 강도를 나타내었다. 특히 고로슬래그 치환율 40%의 SBR혼입 폴리머 시멘트 콘크리트의 인장 및 휨강도는 폴리머 미혼입의 강도보다 약 2배 이상의 높은 강도를 보였다. 이와 같이 높은 강도의 발현은 SBR 폴리머의 높은 인장강도와 SBR라텍스의 혼입에 의한 시멘트 수화물과 골재간의 접착성이 개선되었기 때문이라 판단된다.

아크릴 개질 초속경 폴리머 시멘트 콘크리트의 강도 특성 (Strength Properties of Ultrarapid-Hardening Acrylic-Modified Concrete)

  • 주명기;노병철;김영상;최규형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.945-948
    • /
    • 2008
  • 본 연구는 초속경 아크릴 개질 폴리머 시멘트 콘크리트의 강도 특성에 미치는 폴리머-시멘트비의 영향을 검토한 것이다. 그 결과, 초속경 아크릴 개질 폴리머 시멘트 콘크리트의 윔 및 인장강도는 폴리머-시멘트비의 증가에 따라 증가하였다. 특히 폴리머-시멘트비 20%의 휨 및 인장강도는 폴리머를 혼입하지 않은 콘크리트보다 1.5배 이상의 강도발현을 나타냈다. 이와 같은 강도발현은 아크릴 에멀젼을 혼입함으로써 시멘트 수화물과 골재사이의 부착력이 증가되기 때문이라 판단된다.

  • PDF

Optimization of ferrochrome slag as coarse aggregate in concretes

  • Yaragal, Subhash C.;Kumar, B. Chethan;Mate, Krishna
    • Computers and Concrete
    • /
    • 제23권6호
    • /
    • pp.421-431
    • /
    • 2019
  • The alarming rate of depletion of natural stone based coarse aggregates is a cause of great concern. The coarse aggregates occupy nearly 60-70% by volume of concrete being produced. Research efforts are on to look for alternatives to stone based coarse aggregates from sustainability point of view. Response surface methodology (RSM) is adopted to study and address the effect of ferrochrome slag (FCS) replacement to coarse aggregate replacement in the ordinary Portland cement (OPC) based concretes. RSM involves three different factors (ground granulated blast furnace slag (GGBS) as binder, flyash (FA) as binder, and FCS as coarse aggregate), with three different levels (GGBS (0, 15, and 30%), FA (0, 15, and 30%) and FCS (0, 50, and 100%)). Experiments were carried out to measure the responses like, workability, density, and compressive strength of FCS based concretes. In order to optimize FCS replacement in the OPC based concretes, three different traditional optimization techniques were used (grey relational analysis (GRA), technique for order of preference by similarity (TOPSIS), and desirability function approach (DFA)). Traditional optimization techniques were accompanied with principal component analysis (PCA) to calculate the weightage of responses measured to arrive at the final ranking of replacement levels of GGBS, FA, and FCS in OPC based concretes. Hybrid combination of PCA-TOPSIS technique is found to be significant when compared to other techniques used. 30% GGBS and 50% FCS replacement in OPC based concrete was arrived at, to be optimal.

Correlations between the Impedance and Compressive Strength of Hardened Cement According to the Aggregate Type

  • Hojin Kim;Jinju Kim;Sungyu Park;Je Hyun Bae
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.242-252
    • /
    • 2024
  • To date, methods used to assess the interfacial transition zone (ITZ), which represents the boundary between the aggregate and paste inside concretes, have primarily relied on destructive tests, and non-destructive tests has received little attention until recently. This study assessed the interfaces of concretes with lightweight aggregates based on electrochemical impedance spectroscopy (EIS) for high-strength concretes and examined the possibility of estimating the compressive strength of concretes through non-destructive testing using EIS. The experimental results revealed that the impedance of the hardened cement increased with increasing compressive strength and aggregate density. In particular, when the results of impedance measurement were displayed as a Nyquist plot, the intercept of the x-axis depicting the effective conductivity was proportional to the compressive strength. Furthermore, an equivalent circuit was selected to interpret the correlation between cement aggregates and impedance. Consequently, the compressive strength was found to increase with the value of the resistances of the electrolyte filled in continuous pores in the cement aggregate. And, the pores formed in the ITZ affect this value. The resistance at the ITZ for different aggregates was also obtained, and it was found that the resistance was consistent with the results predicted by SEM images of the ITZ and correlated with the strength of the concretes. The proposed method can be used as a way to easily determine the strength of cement according to differences in aggregate.