• Title/Summary/Keyword: Concrete-filled steel tubular (CFST)

Search Result 72, Processing Time 0.016 seconds

Global seismic performance of a new precast CFST column to RC beam braced frame: Shake table test and numerical study

  • Xu, S.Y.;Li, Z.L.;Liu, H.J.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.805-827
    • /
    • 2016
  • A new type of precast CFST column to RC beam braced frame is proposed in this paper. A series of shake table tests were conducted to excite a one-third scale six-story model for investigating the global seismic performance of this type of structure against earthquake actions. Particular emphasis was given to its dynamic property, global seismic responses and failure path. Correspondingly, a numerical model built on the basis of fiber-beam-element model, multi-layer shell model and element-deactivation method was developed to simulate the seismic performance of the prototype structure. Numerical results were compared with the measured values from shake table tests to verify the validity and reliability of the numerical model. The results demonstrated that the proposed novel precast CFST column to RC beam braced frame performs excellently under strong earthquake excitations; the "strong CFST column-weak RC beam" and "strong connection-weak member" anti-seismic design principles can be easily achieved; the maximum deflections of precast CFSTC-RCB braced frame satisfied the deflection limitations proposed in national code; the numerical model can properly simulate the dynamic property and responses of the precast CFSTC-RCB braced frame that are highly concerned in engineering practice.

Behavior of stiffened and unstiffened CFT under concentric loading, An experimental study

  • Deifalla, Ahmed F.;Fattouh, Fattouh M.;Fawzy, Mona M.;Hussein, Ibrahim S.
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.793-803
    • /
    • 2019
  • Concrete-filled steel tubular (CFST) beam-columns are widely used owing to their good performance. They have high strength, ductility, large energy absorption capacity and low costs. Externally stiffened CFST beam-columns are not used widely due to insufficient design equations that consider all parameters affecting their behavior. Therefore, effect of various parameters (global, local slenderness ratio and adding hoop stiffeners) on the behavior of CFST columns is studied. An experimental study that includes twenty seven specimens is conducted to determine the effect of those parameters. Load capacities, vertical deflections, vertical strains and horizontal strains are all recorded for every specimen. Ratio between outer diameter (D) of pipes and thickness (t) is chosen to avoid local buckling according to different limits set by codes for the maximum D/t ratio. The study includes two loading methods on composite sections: steel only and steel with concrete. The case of loading on steel only, occurs in the connection zone, while the other load case occurs in steel beam connecting externally with the steel column wall. Two failure mechanisms of CFST columns are observed: yielding and global buckling. At early loading stages, steel wall in composite specimens dilated more than concrete so no full bond was achieved which weakened strength and stiffness of specimens. Adding stiffeners to the specimens increases the ultimate load by up to 25% due to redistribution of stresses between stiffener and steel column wall. Finally, design equations previously prepared are verified and found to be only applicable for medium and long columns.

Effect of tube area on the behavior of concrete filled tubular columns

  • Gupta, P.K.;Verma, V.K.;Khaudhair, Ziyad A.;Singh, Heaven
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.141-166
    • /
    • 2015
  • In the present study, a Finite Element Model has been developed and used to study the effect of diameter to wall thickness ratio (D/t) of steel tube filled with concrete under axial loading on its behavior and load carrying capacity. The model is verified by comparing its findings with available experimental results. Influence of thickness and area of steel tube on strength, ductility, confinement and failure mode shapes has been studied. Strength enhancement factors, load factor, confinement contribution, percentage of steel and ductility index are defined and introduced for the assessment. A parametric study by varying length and thickness of tube has been carried out. Diameter of tube kept constant and equals to 140 mm while thickness has been varied between 1 mm and 6 mm. Equations were developed to find out the ultimate load and confined concrete strength of concrete. Variation of lateral confining pressure along the length of concrete cylinder was obtained and found that it varies along the length. The increase in length of tubes has a minimal effect on strength of tube but it affects the failure mode shapes. The findings indicate that optimum use of materials can be achieved by deciding the thickness of steel tube. A better ductility index can be obtained with the use of higher thickness of tube.

Long-term structural analysis and stability assessment of three-pinned CFST arches accounting for geometric nonlinearity

  • Luo, Kai;Pi, Yong-Lin;Gao, Wei;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.379-397
    • /
    • 2016
  • Due to creep and shrinkage of the concrete core, concrete-filled steel tubular (CFST) arches continue to deform in the long-term under sustained loads. This paper presents analytical investigations of the effects of geometric nonlinearity on the long-term in-plane structural performance and stability of three-pinned CFST circular arches under a sustained uniform radial load. Non-linear long-term analysis is conducted and compared with its linear counterpart. It is found that the linear analysis predicts long-term increases of deformations of the CFST arches, but does not predict any long-term changes of the internal actions. However, non-linear analysis predicts not only more significant long-term increases of deformations, but also significant long-term increases of internal actions under the same sustained load. As a result, a three-pinned CFST arch satisfying the serviceability limit state predicted by the linear analysis may violate the serviceability requirement when its geometric nonlinearity is considered. It is also shown that the geometric nonlinearity greatly reduces the long-term in-plane stability of three-pinned CFST arches under the sustained load. A three-pinned CFST arch satisfying the stability limit state predicted by linear analysis in the long-term may lose its stability because of its geometric nonlinearity. Hence, non-linear analysis is needed for correctly predicting the long-term structural behaviour and stability of three-pinned CFST arches under the sustained load. The non-linear long-term behaviour and stability of three-pinned CFST arches are compared with those of two-pinned counterparts. The linear and non-linear analyses for the long-term behaviour and stability are validated by the finite element method.

A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns

  • Memarzadeh, Armin;Shahmansouri, Amir Ali;Poologanathan, Keerthan
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.309-324
    • /
    • 2022
  • The post-fire elastic stiffness and performance of concrete-filled steel tube (CFST) columns containing recycled aggregate concrete (RAC) has rarely been addressed, particularly in terms of material properties. This study was conducted with the aim of assessing the modulus of elasticity of recycled aggregate concrete-filled steel tube (RACFST) stub columns following thermal loading. The test data were employed to model and assess the elastic modulus of circular RACFST stub columns subjected to axial loading after exposure to elevated temperatures. The length/diameter ratio of the specimens was less than three to prevent the sensitivity of overall buckling for the stub columns. The gene expression programming (GEP) method was employed for the model development. The GEP model was derived based on a comprehensive experimental database of heated and non-heated RACFST stub columns that have been properly gathered from the open literature. In this study, by using specifications of 149 specimens, the variables were the steel section ratio, applied temperature, yielding strength of steel, compressive strength of plain concrete, and elastic modulus of steel tube and concrete core (RAC). Moreover, parametric and sensitivity analyses were also performed to determine the contribution of different effective parameters to the post-fire elastic modulus. Additionally, comparisons and verification of the effectiveness of the proposed model were made between the values obtained from the GEP model and the formulas proposed by different researchers. Through the analyses and comparisons of the developed model against formulas available in the literature, the acceptable accuracy of the model for predicting the post-fire modulus of elasticity of circular RACFST stub columns was seen.

Shape effect on axially loaded CFDST columns

  • R, Manigandan;Kumar, Manoj
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.759-772
    • /
    • 2022
  • Concrete-filled double skinned steel tubular (CFDST) columns have been used to construct modern structures such as tall buildings and bridges as well as infrastructures as they provide better, lesser weight, and greater stiffness in structural performance than conventional reinforced concrete or steel members. Different shapes of CFDST columns may be needed to satisfy the architectural and aesthetic criteria. In the study, three-dimensional FE simulations of circular and elliptical CFDST columns under axial compression were developed and verified through the experimental test data from the perspectives of full load-displacement histories, ultimate axial strengths, and failure modes. The verified FE models were used to investigate and compare the structural performance of CFDST columns with circular and elliptical cross-section shapes by evaluating the overall load-deformation curves, interaction stress-deformation responses, and composite actions of the column. At last, the accuracy of available design models in predicting the ultimate axial strengths of CFST columns were investigated. Research results showed that circular and elliptical CFDST column behaviors were generally similar. The overall structural performance of circular CFDST columns was relatively improved compared to the elliptical CFDST column.

Influence of slenderness on axially loaded square tubed steel-reinforced concrete columns

  • Yan, Biao;Gan, Dan;Zhou, Xuhong;Zhu, Weiqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • This paper aims to investigate the axial load behavior and stability strength of square tubed steel-reinforced concrete (TSRC) columns. Unlike concrete filled steel tubular (CFST) column, the outer steel tube of a TSRC column is mainly used to provide confinement to the core concrete. Ten specimens were tested under axial compression, and the main test variables included length-to-width ratio (L/B) of the specimens, width-to-thickness ratio (B/t) of the steel tubes, and with or without stud shear connectors on the steel sections. The failure mode, ultimate strength and load-tube stress response of each specimen were summarized and analyzed. The test results indicated that the axial load carried by square tube due to friction and bond of the interface increased with the increase of L/B ratio, while the confinement effect of tube was just the opposite. Parametric studies were performed through ABAQUS based on the test results, and the feasibility of current design codes has also been examined. Finally, a method for calculating the ultimate strength of this composite column was proposed, in which the slenderness effect on the tube confinement was considered.

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.

Vibration analysis of CFST tied-arch bridge due to moving vehicles

  • Yang, Jian-Rong;Li, Jian-Zhong;Chen, Yong-Hong
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • Based on the Model Coupled Method (MCM), a case study has been carried out on a Concrete-Filled Steel Tubular (CFST) tied arch bridge to investigate the vibration problem. The mathematical model assumed a finite element representation of the bridge together with beam, shell, and link elements, and the vehicle simulation employed a three dimensional linear vehicle model with seven independent degrees-of-freedom. A well-known power spectral density of road pavement profiles defined the road surface roughness for Perfect, Good and Poor roads respectively. In virtue of a home-code program, the dynamic interaction between the bridge and vehicle model was simulated, and the dynamic amplification factors were computed for displacement and internal force. The impact effects of the vehicle on different bridge members and the influencing factors were studied. Meanwhile the acceleration responses of some of the components were analyzed in the frequency domain. From the results some valuable conclusions have been drawn.

Reliability analysis for lateral stability of tongwamen bridge

  • Pan, Sheng-Shan;Lei, Shi;Tan, Yong-Gang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.423-434
    • /
    • 2011
  • Tongwamen Bridge is a critical link between Dongmen Island and the land in Shipu town, Zhejiang province, China. It is a 238 m span, half-through, concrete-filled steel tubular (CFST) X-type arch bridge. The width of the deck is only 10 m, yielding a width-to-span ratio of 1/23.8. The plane truss type section rib was adopted, which made of two CFST chords and web member system. The lateral stability is the key issue to this bridge. However, the existing researches on Tongwamen Bridge's lateral stability are all the deterministic structural analysis. In this paper, a new strategy for positioning sampling points of the response surface method (RSM), based on the composite method combining RSM with geometric method for structural reliability analysis, is employed to obtain the reliability index of lateral stability. In addition the correlated parameters were discussed in detail to find the major factors. According to the analysis results, increasing the stiff of lateral braces between the arch ribs and setting the proper inward-incline degree of the arch rib can enhance obviously the reliability of lateral stability. Moreover, the deck action of non-orienting force is less than the two factors above. The calculated results indicate that the arch ribs are safe enough to keep excellent stability, and it provides the foundation that the plane truss rib would be a competitive solution for a long-span, narrow, CFST arch bridge.