• 제목/요약/키워드: Concrete slab

검색결과 1,720건 처리시간 0.023초

Numerical analysis of simply supported one-way reinforced concrete slabs under fire condition

  • Ding, Fa-xing;Wang, Wenjun;Jiang, Binhui;Wang, Liping;Liu, Xuemei
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.355-367
    • /
    • 2021
  • This paper investigates the mechanical response of simply supported one-way reinforced concrete slabs under fire through numerical analysis. The numerical model is constructed using the software ABAQUS, and verified by experimental results. Generally, mechanical response of the slab can be divided into four stages, accompanied with drastic stress redistribution. In the first stage, the bottom of the slab is under tension and the top is under compression. In the second stage, stress at bottom of the slab becomes compression due to thermal expansion, with the tension zone at the mid-span section moving up along the thickness of the slab. In the third stage, compression stress at bottom of the slab starts to decrease with the deflection of the slab increasing significantly. In the fourth stage, the bottom of the slab is under tension again, eventually leading to cracking of the slab. Parametric studies were further performed to investigate the effects of load ratio, thickness of protective layer, width-span ratio and slab thickness on the performance of the slab. Results show that increasing the thickness of the slab or reducing the load ratio can significantly postpone the time that deflection of the slab reaches span/20 under fire. It is also worth noting that slabs with the span ratio of 1:1 reached a deflection of span/20 22 min less than those of 1:3. The thickness of protective layer has little effect on performance of the slab until it reaches a deflection of span/20, but its effect becomes obvious in the late stages of fire.

콘크리트 강도에 따른 바닥판 수직진동에 대한 적정 두께 제안 (The Adequate Slab Thickness Satisfied with the Vertical Floor Vibration Criteria for Several Concrete Compressive Strength)

  • 남상욱;한상환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.659-662
    • /
    • 2003
  • Recently, the floor thickness in residence may not be satisfied with the floor vibration criteria although the thickness is evaluated by the serviceability requirements in current design provisions. Thus it is necessary to develop the procedure to determine slab thickness satisfied with the floor vibration criteria. In this study, We proposed the methods to determine the slab thickness satisfied with the vertical floor vibration criteria for several concrete compressive strength of flat plate floor systems. For this purpose Monte Carlo simulation procedure was adopted and both randomness inherent in young modulus of concrete and heel drop intensity were accounted.

  • PDF

부착 안된 부분 P.C 슬래브의 해석 (Analysis of Partially Prestressed Concrete Slab without bond)

  • 박흥용;최익창;연준희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.13-18
    • /
    • 1990
  • This paper introduced truss model and one-way slab elastic Model to analyse flexure of unbonded prestressed concrete member. After cracking, we could determine concrete membrane depth, deflection and stress. In order to do that, an numerical example of simply supported one way slab which has non-external membrane support(s=0) is analysed. The analytical results using the analytical model were compared with several experimental results and were generally satisfied.

  • PDF

고온에 노출된 중공슬래브의 잔존성능 추정방법 (Estimation Method of Residual Performance for Hollow Slab at Elevated Temperature)

  • 최현기;정주홍;최창식
    • 콘크리트학회논문집
    • /
    • 제26권5호
    • /
    • pp.643-650
    • /
    • 2014
  • 일반적으로, 철근콘크리트 슬래브는 재료의 열적특성에 의해 높은 수준의 화재 저항 성능을 보유하고 있다. 그러나, 중공슬래브의 경우 일반 철근콘크리트 슬래브와는 다른 온도분포 및 화재 저항 성능을 보유하고 있을 것으로 예상된다. 중공슬래브는 콘크리트의 축열 효과를 발생시키는 공기층을 만들어내는 중공을 보유하고 있기 때문이다. 이에 연구에서는 중공슬래브의 화재 저항 성능을 평가하는 방법을 Wickstorm이 제안한 방법을 사용하여 제안하였다. 이 연구에서는 본 연구의 연구자가 제안한 도넛형 중공을 보유한 중공슬래브의 화재저항성능에 대한 단순화된 평가 방안을 제시하였다. 또한, 제안된 방법은 중공슬래브에 대한 화재실험을 통해 검증하였다. 이 연구의 결과를 통해 제안된 방법은 화재 발생 이후 중공슬래브의 잔존강도 추정이 가능함을 확인하였으며, 슬래브에 분포되는 온도의 특성을 정확하게 파악할 수 있는 것을 확인할 수 있었다.

표준화재 재하조건 콘크리트 중공슬래브의 피복두께에 따른 화재거동에 관한 실험적 연구 (An Experimental Study on the Fire Behavior of Concrete Void Slab under Standard Fire with Loading Condition)

  • 김흥열;김형준;조범연;여인환;권인규
    • 한국화재소방학회논문지
    • /
    • 제25권6호
    • /
    • pp.64-72
    • /
    • 2011
  • 기존의 무량판 구조와 동일한 콘크리트 중공슬래브구조는 구조적 하중지지 성능이 불필요한 슬래브 단면상의 중앙부 콘크리트를 제거하여 슬래브의 자중을 줄이고 무량판 구조의 단점을 보완하여 장점을 극대화시킨 구조형식이다. 본 연구에서는 콘크리트 중공슬래브 공법의 실제 스팬길이인 7.5 m에서 슬래브 피복두께에 따른 화재거동 영향성 분석을 위하여 화재실험을 수행하였다. 하중조건은 고정하중과 적재하중을 고려하여 실험체에 등분포 조건으로 사전 재하하였으며, 표준화재조건으로 재하가열 실험을 수행하였다. 슬래브의 화재가열 노출면으로부터의 깊이별 온도변화와 처짐변형 특성을 측정하였으며, KS F 2257-1 평가기준에 의거하여 슬래브의 내화성능을 평가하였다. 실험결과 피복두께 50 mm를 확보할 경우, EPS 중공체로 제작한 실험체의 경우 약 2시간 정도의 내화성능을 확보할 수 있는 것으로 나타났다.

공동주택 슬래브 두께변화에 따른 공사비 증가 산정 평가 - 바닥충격음 법제화 시행에 따른 표준바닥구조를 중심으로 - (An Evaluation on a calculation the increased cost of construction according to the Depth change of Concrete Slabs in Apartment Building by executing the law of floor impact sound)

  • 이원열;정상민;신덕
    • 한국건축시공학회지
    • /
    • 제5권2호
    • /
    • pp.161-166
    • /
    • 2005
  • This study is to evaluate on the increased cost of construction according to the depth change of concrete slabs in apartment building. When we increased the depth of concrete slab from 150mm to 180, 210mm, the qualitative and cost of construction were calculated by the high-rise type, the unit-size type. As a result of this study, in 32 Pyong type, increment of construction cost rate appeared by $5.1\%$ in case of increase from slab 150mm to 180mm, and $10.0\%$ in case of increase from slab 150mm to 210mm. In 45 Pyong type, Increment of construction cost rate appeared by $5.7\%$ in case of increase from slab 150mm to 180mm, and $10.2\%$ in case of increase from slab 150mm to 210mm. In 55 Pyong type, Increment of construction cost rate appeared by $2.4\%$ in case of increase from slab 150mm to 180mm, and $8.9\%$ in case of increase from slab 150mm to 210mm.

Alternatives to Enhance Flat Slab Ductility

  • Husain, Mohamed;Eisa, Ahmed S.;Roshdy, Ramy
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.161-169
    • /
    • 2017
  • Flat slab systems are vastly used in multi-story buildings because of their savings in story height and construction time, as well as for their flexibility in architectural remodeling. However, they frequently suffer brittle punching-shear failure around columns, especially when subjected to lateral loads. Therefore, seismic codes labeled flat slabs as non-ductile systems. This research goal is investigating some construction alternatives to enhance flat slab ductility and deformability. The alternatives are: adding different types of punching-shear reinforcement, using discreet fibers in concrete mixes, and increasing thickness of slab around columns. The experimental study included preparation and testing of seven half-scale interior slab-column connections up to failure. The first specimen is considered a reference, the second two specimens made of concrete mixes with different volumetric ratios of polymer fibers. Another three specimens reinforced with different types of punching-shear reinforcement, and the last specimen constructed with drop panel of inverted pyramidal shape. It is found that using the inverted pyramid-shape drop panel of specimen, increases the punching-shear capacity, and the initial and the post-cracking stiffnesses. The initial elastic stiffnesses are different for all specimens especially for the slab with closed stirrups where it is experienced the highest initial stiffness compared to the reference slab.

피로강도와 사용성을 고려한 RC 바닥판의 최소두께 (Minimum Thickness of RC Bridge Slab Considering Fatigue and Serviceability)

  • 황훈희;조창빈;김병석;정철헌
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.248-251
    • /
    • 2004
  • This study was performed to propose the minimum thickness of RC slab that satisfies constructibility, fatigue safety, and serviceability requirements such as deflection control. Three different minimum thicknesses are calculated using concrete shear and rebar fatigue formulas, and deflection control, respectively, and checked by constructiblity. The maximum of these three minimum thicknesses is proposed as the minimum thickness of RC slab, which shows that the minimum thickness requirement of RC slab from Korean Bridge Design Code can be thinner than now.

  • PDF

Structural Behavior of a RC Bridge Slab Retrofitted with Carbon Fiber Sheet under Large Repeated Load

  • Park, Hae-Geun
    • KCI Concrete Journal
    • /
    • 제14권2호
    • /
    • pp.61-68
    • /
    • 2002
  • An experimental investigation on the flexural fatigue behavior of a RC bridge slab retrofitted with Carbon Fiber Sheet (CFS) is presented. The test slab was almost identical to the slab of a highway viaduct in terms of the amount of reinforcement, quality of concrete and thickness of the slab, which was 18cm. Repeated load corresponding to 3.0, 4.5 or 6.0 times of the design load was applied to the test slab. Normal type and high-elastic modulus type of CFS were used for strengthening. The test slabs were loaded in dry or wet condition. Two different types of an-choring system were adapted. Some of the test slabs were damaged by the repeated load and retrofitted by CFS, then loaded again to see the improvement of the fatigue life. Infrared Thermography was also performed to investigate the debonding condition of CFS. From the test results, Carbon Fiber Sheet can be applied to the RC bridge slabs as a feasible retrofitting material.

  • PDF

Damage mechanism and stress response of reinforced concrete slab under blast loading

  • Senthil, K.;Singhal, A.;Shailja, B.
    • Coupled systems mechanics
    • /
    • 제8권4호
    • /
    • pp.315-338
    • /
    • 2019
  • The numerical investigations have been carried out on reinforced concrete slab against blast loading to demonstrate the accuracy and effectiveness of the finite element based numerical models using commercial package ABAQUS. The response of reinforced concrete slab have been studied against the influence of weight of TNT, standoff distance, boundary conditions, influence of air blast and surface blast. The results thus obtained from simulations were compared with the experiments available in literature. The inelastic behavior of concrete and steel reinforcement bar has been incorporated through concrete damage plasticity model and Johnson-cook models available in ABAQUS were presented. The predicted results through numerical simulations of the present study were found in close agreement with the experimental results. The damage mechanism and stress response of target were assessed based on the intensity of deformations, impulse velocity, von-Mises stresses and damage index in concrete. The results indicate that the standoff distance has great influence on the survivability of RC slab against blast loading. It is concluded that the velocity of impulse wave was found to be decreased from 17 to 11 m/s when the mass of TNT is reduced from 12 to 6 kg. It is observed that the maximum stress in the concrete was found to be in the range of 15 to $20N/mm^2$ and is almost constant for given charge weight. The slab with two short edge discontinuous end condition was found better and it may be utilised in designing important structures. Also it is observed that the deflection in slab by air blast was found decreased by 60% as compared to surface blast.