• 제목/요약/키워드: Concrete rod

검색결과 135건 처리시간 0.029초

광촉매 적용 감성콘크리트 시작품 현장적용 (Field Application of Protopype LEFC Applied With Photocatalys)

  • 김병일;오상근;박현호;김수연
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.152-153
    • /
    • 2021
  • Various types of panels can be designed using acrylic rods, which are materials that allow light to pass through existing concrete. After designing using people, animals and objects, a prototype was produced by mixing ultra-high-strength concrete, and taking care not to damage the fixed acrylic rod during pouring and demolding. Yun Dong-ju's free design of a figure and a researcher were inserted into the wall inside the interior space, and then the installation was completed on-site. For installation, a metal frame was installed on the temporary wall, which is a non-structural wall, and then a relatively heavy concrete panel was fixed using a structural sealant and then applied to the field.

  • PDF

원격해체 작업을 위한 유압 시스템의 SPO 기반 반력 추정 및 힘 반향 양방향 원격제어 (SPO based Reaction Force Estimation and Force Reflection Bilateral Control of Cylinder for Tele-Dismantling)

  • 차금강;윤성민;이민철
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2017
  • For dismantling heavy structure under special environment in radioactivity, there are many problems which should be tele-operated and feedback a cutting force for cutting a thick structure such as concrete. When operator dismantles a thick heavy concrete structure, it is in sufficient to judge whether robot is contacting or not with environment by using only vision information. To overcome this problem, force feedback and impedance model based bilateral control are introduced. The sliding mode control with sliding perturbation observer (SMCSPO) based bilateral control is applied and surveyed to a single rod hydraulic cylinder in this paper. The sliding mode control is used for robustness against a disturbance. The sliding perturbation observer is used for estimation of a reaction force such as cutting force. The bilateral control is executed using the information of reaction force estimated by SMCSPO. The contribution of this paper is that the estimation method and bilateral control of the single rod hydraulic cylinder are introduced and discussed by experiment.

RBSN 방법을 사용한 콘크리트에 삽입된 FRP rod의 Pull-out거동의 3D 수치 Simulation (3D Numerical Simulation of Pullout Behavior of FRP Embedded in Concrete using RBSN Method)

  • 김장호;이정;키엣;홍종석;김윤호;이경민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.365-368
    • /
    • 2006
  • RBSN Method, Rigid-Body-Spring Network Method, is a structural analysis method that overcomes the problems faced in FEM analysis of concrete or crack forming structures. In RBSN, irregular lattices are used to model structural components consisting of bulk material, curvilinear reinforcements, and their interfaces. Because reinforcements and their interfaces in the bulk material are freely positioned, meshing is irrespective of the geometry of the representing bulk material. In this paper, RBSN method of 3D is applied in simulating the pull-out test of FRP (Fiber Reinforced Polymer) embedded in concrete. The comparison of analysis results to experimental results shows that RBSN method simulates the shear-slip behavior very precisely. From the analysis results, 3D RBSN method is proven to be an effective and accurate analysis method for concrete structural analysis. Also, the results show that RBSN method can be a potential analysis method for concrete structures that can replace the current FEM analysis.

  • PDF

대구경 현장타설말뚝에 대한 변형봉 센서의 현장적용성에 관한 연구 (A Study on Field Application of a Deformable Rod Sensor to Large Diameter Drilled Shafts)

  • 정성기;김상일;정성교;최용규;이민희
    • 한국지반공학회논문집
    • /
    • 제19권6호
    • /
    • pp.15-22
    • /
    • 2003
  • 강관 내부 속채움한 현장타설말뚝에 대한 기존의 하중전이 측정에서는 강관의 변형률만 측정하고 콘크리트의 변형률은 강관과 동일하다고 가정하였으며, 시방서에 규정한 방법으로 구한 강관과 콘크리트의 탄성계수를 이용하여 말뚝 구성부재의 응력 및 축하중을 산정하였다. 그러나 강관의 변형률만 측정하여 강관과 콘크리트가 완전합성 거동하는 것으로 산정한 축하중은 실제 하중값과 상당한 차이를 보이고 있어 강관 내부 속채움한 현장타설말뚝의 거동을 정확히 분석할 수 없었다. 본 연구에서는 현장에서 제작한 콘크리트 공시체의 압축강도 시험을 통하여 탄성계수를 구하고 강재와 콘크리트의 변형률을 각각 측정할 수 있는 변형봉 센서를 이용하여 새로운 말뚝축하중 측정 방법을 제안하였다. 변형봉 센서를 사용하여 말뚝축하중을 산정할 경우 콘크리트의 탄성계수는 현장에서 제작한 콘크리트 공시체의 압축강도 시험에서 구하였으며, (0.2-0.6)$f_{ck}$의 응력 범위에 해당하는 평균접선기울기를 탄성계수로 사용하였다. 세 개의 현장타설말뚝에 대해 수행된 하중전이 측정 실험 결과를 이용하여 현장 적용성을 확인하였다. 변형봉 센서의 적용성은 대구경 현장타설말뚝에 대한 축하중 분포도를 통하여 확인하였는데, 말뚝머리에서 계산된 하중은 강관 내부속채움한 현장타설말뚝의 경우 실제작용하중에 비하여 -11∼-16% 오차를 나타내었으며, 현장타설 철근콘크리트말뚝의 경우 3.4% 오차를 나타내었다.

신보강재로 보수 보강한 기둥의 구조 성능 개선 (Structural Performance Enhancement of Seismic Retrofitted Column Using New Reinforcing Materials)

  • 오창학;한상환;이리형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.121-128
    • /
    • 2001
  • Reinforced concrete frame buildings in regions of low to moderate seismicity are typically designed only for gravity loads with non-seismic detailing provisions of the code. These buildings possess strong beam-weak column, which brings about the brittle structural performance like the column sidesway failure mechanism during the strong lateral load. The objective of this paper is to enhance the column strength and deformation capacity for reconfiguring the structural failure mode by averting a column soft-story collapse and moving to a more ductile beam-sides way mechanism suing new reinforcing materials. Aramid fiber sheet and reinforcing rod-composite materials was used for this purpose. The column was modeled by the 2/3 scale experimental specimen retested. According to the concept of the capacity design, the damaged column was strengthened by the column jacketing using new reinfocing materials such as rod-composite materials. In conclusion, the improvement of the flexural strength is observed and the capacity of the energy dissipation and the ductility is enhanced, too.

  • PDF

Rotational behavior of exposed column bases with different base plate thickness

  • Cui, Yao;Wang, Fengzhi;Li, Hao;Yamada, Satoshi
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.497-507
    • /
    • 2019
  • Exposed column base connections are used in low- to mid-rise steel moment resisting frames. This paper is to investigate the effect of the base plate thickness on the exposed column base connection strength, stiffness, and energy dissipation. Five specimens with different base plate thickness were numerically modelled using ABAQUS software. The numerical model is able to reproduce the key characteristics of the experimental response. Based on the numerical analysis, the critical base plate thickness to identify the base plate and anchor rod yield mechanism is proposed. For the connection with base plate yield mechanism, the resisting moment is carried by the flexural bending of the base plate. Yield lines in the base plate on the tension side and compression side are illustrated, respectively. This type of connection exhibits a relatively large energy dissipation. For the connection with anchor rod yield mechanism, the moment is resisted through a combination of bearing stresses of concrete foundation on the compression side and tensile forces in the anchor rods on the tension side. This type of connection exhibits self-centering behavior and shows higher initial stiffness and bending strength. In addition, the methods to predict the moment resistance of the connection with different yield mechanisms are presented. And the evaluated moment resistances agree well with the values obtained from the FEM model.

Experimental bond behavior of hybrid rods for concrete reinforcement

  • Nanni, Antonio;Nenninger, Jeremy S.;Ash, Kenneth D.;Liu, Judy
    • Structural Engineering and Mechanics
    • /
    • 제5권4호
    • /
    • pp.339-353
    • /
    • 1997
  • Fiber reinforced plastic (FRP) rods provide certain benefits over steel as concrete reinforcement, such as corrosion resistance, magnetic and electrical insulation, light weight, and high strength. FRP composites can be combined with a steel core to form hybrid reinforcing rods that take advantage of properties of both materials. The objective of this study was to characterize the bond behavior of hybrid FRP rods made with braided epoxy-impregnated aramid or poly-vinyl alcohol FRP skins. Eleven rod types were tested using two concrete strengths. Specific topics examined were bond strength, slip, and type of failure in concentric pull-out tests from concrete cubes. From analysis of identical pull-out tests on both hybrid and steel rods, information on relative bond strength and behavior were obtained. It is concluded that strength is similar but slip in hybrid rods is much higher. Hybrid rods failed either by pull-out or splitting the concrete block (with or without yielding of the steel core). Experimental data showed consistency with similar test results presented in the literature.

Influence of binder, aggregate and compaction techniques on the properties of single-sized pervious concrete

  • Juradin, Sandra;Ostojic-Skomrlj, Nives;Brnas, Ivan;Prolic, Marina
    • Advances in concrete construction
    • /
    • 제10권3호
    • /
    • pp.211-220
    • /
    • 2020
  • In this paper, 18 single-sized pervious concrete mixtures were tested. The mixtures were prepared by altering: the amount and type of binder, type of aggregate, and the method of compaction. Concrete was compacted in layers in one of five different consolidation techniques: with standard tamping rod, wooden lath, concrete cylinder, or vibration of 12 and 40 s. Tests carried out on the specimens were: slump, density, porosity, coefficients of permeability, compressive strength and splitting strength. The relationships between porosity-density and porosity-strength were established. Two mixtures were selected for the preparation of test slabs on different subgrades and their permeability was tested according to ASTM C 1701-09 Standard. By comparing laboratory and field tests of permeability, it was concluded that the subgrade affects the test results. Measurements on the test slabs were repeated after 1 and 2 years of installation.

전위분포특성을 이용한 접촉전압과 보폭전압의 분석 (Analysis of Touch Voltage and Step Voltage using a Potential Distribution Characteristic)

  • 이복희;정현욱;최종혁;조성철;백영환;이규선;안창환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1474-1475
    • /
    • 2006
  • This paper describes touch and step voltage in the reinforced concrete and steel poles. Ground surface potential rises were measured as a function of the separation between pole and ground rod. Touch and step voltage are calculated on the basis of the distribution of ground surface potential rises. As a result, touch and step voltages strongly depend on the position of installation of ground rod.

  • PDF

Shaking Table Test and Analysis of Reinforced Concrete Frame with Steel Shear Wall with Circular Opening and Slit Damper

  • Shin, Hye-Min;Lee, Hee-Du;Shin, Kyung-Jae
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1420-1430
    • /
    • 2018
  • Earthquakes of 5.8 and 5.4 Richter scale recently occurred one after another in Korea, changing the Korean peninsula from an earthquake safe zone but 'earthquake danger zone'. Therefore, seismic reinforcements must expand to include structures with low seismic resistance in order to prepare for earthquakes on a larger scale in the future. This study investigated the performances of various seismic reinforcement systems such as X-braced steel rod reinforcement, steel shear wall with circular opening reinforcement, and slit damper reinforcement using shaking table test and computational analyses of seismic data in order to establish a proper seismic reinforcement plan. These three seismic reinforcement systems could increase the stiffness and strength of existing structures and reduce maximum drift ratio in the event of an earthquake.