• Title/Summary/Keyword: Concrete resistivity

Search Result 133, Processing Time 0.026 seconds

Durability Prediction for Concrete Structures Exposed to Carbonation Using a Bayesian Approach (베이지안 기법을 이용한 중성화에 노출된 콘크리트 구조물의 내구성 예측)

  • Jung, Hyun-Jun;Kim, Gyu-Seon;Ju, Min-Kwan;Lee, Sang-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.275-276
    • /
    • 2009
  • This paper provides a new approach for predicting the corrosion resistivity of reinforced concrete structures exposed to carbonation. In this method, the prediction can be updated successively by a Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model. To simplify the procedure of the model, the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored.

  • PDF

An integral based fuzzy approach to evaluate waste materials for concrete

  • Onat, Onur;Celik, Erkan
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.323-333
    • /
    • 2017
  • Waste materials in concrete have been considered as one of the most important issues by the authorities, policy makers and researchers to maintain engineering serviceability in terms of economy, durability and sustainability. Therefore, evaluation and selection of waste materials with respect to multi criteria decision making (MCDM) for the construction industry has been gained importance for recovery and reuse. In this paper, Choquet integral based fuzzy approach is proposed for evaluating the most suitable waste materials with respect to compressive strength, tensile strength, flexural strength, compactness, toughness (resistivity for dynamic loads), water absorption and accessibility. On conclusion, waste tyre and silica fume were determined as the most suitable waste materials for concrete production. The obtained results are recommended to assist the authorities on configuring well designed strategies for construction industry with disposal materials.

The effect of cathodic protection system by means of zinc sacrificial anode on pier in Korea

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1206-1211
    • /
    • 2014
  • This study has been conducted to confirm the effect of sacrificial anode cathodic protection system for 90 days to protect corrosion on pier that is located in Korea. The cathodically protected structure was a slab and a pile cap. Before the construction of cathodic protection system, the macrography was carried out. As a result of the macrography, many corrosion traces were confirmed in this structure. The trace was mainly focused on joint and zones that concrete cover was eliminated. To apply the cathodic protection system, many onsite techniques have been adopted. In addition, to confirm the inner state of steel in concrete properly, a corrosion monitoring sensor (DMS-100, Conclinic Co. Ltd) has been applied. Test factors were corrosion & cathodic protection potential, 4 hour depolarization potential, resistivity and current density. After 90 days from the installation of cathodic protection system, it could confirm that proper corrosion protection effect was obtained by considering the result of tests.

Variables affecting strain sensing function in cementitious composites with carbon fibers

  • Baeza, F.J.;Zornoza, E.;Andion, L.G.;Ivorra, S.;Garces, P.
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.229-241
    • /
    • 2011
  • In this work, cement paste samples with 1% (by cement mass) of a conductive carbon fiber admixture have been studied under uniaxial compression. Three different arrangements were used to measure the resistivity of the samples. According to the results obtained, the resistance should be measured using the four wire method in order to obtain good sensitivity and repeatability. The effect of the load value and the load rate on the fractional change of the volume resistivity has been determined. It has been observed that the gage factor (fractional change in resistance respect to strain) increases when the maximum load is increased, and the loading rate does not affect significantly this parameter. The effect of the sample ambient humidity on the material piezoresistivity has also been studied, showing that the response of the composite is highly affected by this parameter.

Microstructure and Freeze-Thaw Resistance of Portland Cement Mortars (포틀랜드 시멘트 모르타르의 미세구조와 동결융해저항성에 대하여)

  • 이종호;장복기
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.11
    • /
    • pp.917-925
    • /
    • 1991
  • For the present experiment five Portland cement mortars are in order: mortars with two different water/ cement ratios (W/C=0.45 and 0.50, each having no chemical additive), and those with an additive such as superplasticizer, air-entraining agent or water-repelling agent. We fix the W/C ratio of mortars having additive so that their pastes can yield the same workability as that of the cement mortar of W/C=0.50 with no additive. It is shown that the freeze-thaw resistivity depends heavily on the characteristic of wide pores. Despite a good deal of wide pores, the air-entrained specimen shows a good freeze-thaw resistivity due to appropriate air-pores. And also the specimen with water-repelling agent, which proves to cause the microstructure to become hydrophobic, make good resistance to freeze-thaw cycles in spite of its high wide-porosity. Our suggestion is that the freeze-thaw durability of Portland cement mortar/concrete can be more effectively enhanced by using air-entraining agent or water-repelling agent, and simutaneously by taking proper measures against foaming and/or the increased tendency of wide-pore building due to additive.

  • PDF

Literature Review on Material Development and Performance Evaluation Method for EMP Shielding Concrete (EMP 차폐 콘크리트 개발 및 성능평가 방법에 관한 문헌 연구)

  • Lee, Woong-Jong;Lee, Hwan;Kim, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.67-76
    • /
    • 2020
  • The purpose of this study was to derive the directionality of technology development of high-power electromagnetic pulse (EMP) shielding concrete and standardization of a shielding performance evaluation method. Because the EMP shielding mechanism of concrete has not been identified clearly, and the verification method for EMP shielding performance has not been standardized, it is difficult to compare the research results between researchers. The development direction of EMP shielding concrete was derived from a consideration of the electromagnetic wave loss mechanism of metal. The standardization direction for verifying the EMP shielding performance of concrete was derived from a consideration of the electrical properties of concrete and the shielding performance evaluation methods of previous studies. As a result, the development of electrically conductive concrete is required, and test methods classified by the electromagnetic wave loss mechanism should be applied. For quality verification, the development of EMP shielding concrete will be feasible and its performance can be evaluated if a test method referencing the generalized shielding evaluation method (MIL-STD, etc.) is applied.

Performance characteristics of dredged silt and high-performance lightweight aggregate concrete

  • Wang, H.Y.;Sheen, Y.N.;Hung, M.F.
    • Computers and Concrete
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 2010
  • Dredged silt from reservoirs in southern Taiwan was sintered to make lightweight aggregates (LWA), which were then used to produce high-performance lightweight aggregate concrete (HPLWC). The HPLWC was manufactured using different amounts of mixing water (140, 150, and 160 $kg/m^3$) and LWA of different particle densities (700, 1100, and 1500 $kg/m^3$) at different W/b ratios (0.28, 0.32, and 0.4). Results show that the lightweight aggregates of dredged silt taken in southern Taiwan perform better than the general lightweight aggregates. In addition, the HPLWC possessed high workability with a slump of 230-270 mm, and a slump flow of 450-610 mm, high compressive strength of over 40 MPa after 28 days of curing, good strength efficiency of cement exceeding $0.1MPa/kg/m^3$, low thermal conductivity of 0.4-0.8 $kcal/mh^{\circ}C$, shrinkage of less than $4.8{\times}10^{-4}$, and high electrical resistivity of above 40 $k{\Omega}-cm$. The above findings prove that HPLWC made from dredged silt can help enhance durability of concrete and provide and an ecological alternative use of dredged silt.

Evaluation of Concrete-Track Deformation for High-Speed Railways by Characteristic Stiffness (강성특성치를 이용한 고속전철 콘크리트궤도의 처짐가능성 평가)

  • Joh, Sung-Ho;Lee, Il-Wha;Hwang, Seon-Keun;Kang, Tae-Ho;Kim, Seok-Chul
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.641-646
    • /
    • 2009
  • Concrete tracks are superior to ballast tracks in the aspect of durability, maintenance and safety. However, deteriorated stiffness of railroad bed and settlement of soft ground induced by trapped or seepage water lead to problems in safety of train operation. In this research, characteristic stiffness of concrete tracks, which is determined from FRACTAL (Flexural-Rigidity Assessment of Concrete Tracks by Antisymmetric Lamb Waves) technique, was employed as an index of track displacement. The characteristic stiffness is defined using Poisson's ratio, moment of inertia and stiffness ratio of subgrade to slab. To verify validity and reliability of the proposed characteristic stiffness, experimental and theoretical researches were performed. Feasibility of the characteristic stiffness based on FRACTAL technique was proved at a real concrete track for Korean high-speed trains. Validity of the FRACTAL technique was also verified by comparing the results of impulse-response tests performed at the same measurement array and the results of SASW tests and DC resistivity survey performed at a shoulder nearby the track.

  • PDF

Mechanical Performance Evaluation of Concrete with Recycled Coarse Aggregate Selected by Multi-stage Wind Pressure (다단형 풍압처리에 의해 선별된 순환굵은골재 적용 콘크리트의 역학적 성능 평가)

  • Chu, Young-Kyu;Lee, Seung-Tae;Lee, Se-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, the mechanical properties of concrete with recycled coarse aggregate (RG) selected by multi-stage wind pressure (MSWP) treatment were evaluated. After evaluating the basic properties of natural and recycled coarse aggregates, the mechanical performance of the recycled coarse aggregates concrete was experimentally investigated. As a result, it was found that the MSWP technique could improve the fundamental properties such as density and water absorption of RG. In addition, the concrete with RG selected by MSWP showed a better mechanical performance, indicating a higher strength values, surface electric resistivity and a lower absorption. Thus, it seems that the MSWP technique can be effective for the production of high-quality RG.

Durability Properties of High Volume Blast Furnace Slag Concrete for Application in Nuclear Power Plants (고로슬래그 다량치환 콘크리트의 원전 콘크리트 적용을 위한 내구성능 평가)

  • Seo, Eun-A;Lee, Jang-Hwa;Lee, Ho-Jea;Kim, Do-Gyeum
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • This study evaluated the durability of nuclear power plant concrete. The main parameters were the water-to-binder ratio and admixture type. The results revealed that high-volume ground granulated blast-furnace slag(GGBS) concrete had lower initial strength, while the strength reached higher after 28 days. On the other hand, the initial strength of fly ash blended concrete was high, but the long-term strength of the robbery was low. The measured durability of GGBS blended concrete was found to be better than that of the existing concrete mix for use in the construction of nuclear power plants. Especially, the GGBS blended concrete was more durable than the fly ash blended concrete in terms of chloride attack, carbonation resistivity and freezing-thawing durability in low compressive strength. The effects of concrete compressive strength according to gamma rays were minor.