• Title/Summary/Keyword: Concrete repair

Search Result 807, Processing Time 0.023 seconds

A Study on the Properties of the Repair materials of Concrete Structure (노후화된 콘크리트 구조물 보수재료의 기초물성에 대한 연구)

  • 이창수;김성수;곽도연;이규동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.867-870
    • /
    • 1998
  • The reinforced concrete structures have been deteriorated for various causes since it serviced for the long time. If we have to service concrete structure long time, we must repair it using appropriate methods and materials. But the data which evaluate the repair material has not been sufficient. So, the aim of this research is to estimate properties of repair materials and to acquire the data which apply to the concrete structures in field. To accomplish this objective, we have made experiment on compressive strength, bond strength, the coefficient of thermal expansion and setting time. Generally, compressive strength and bond strength are favorable but some products are unfavorable under wet curing. Setting time was faster than ordinary portland cement mortar except one material.

  • PDF

Risk-based optimum repair planning of corroded reinforced concrete structures

  • Nepal, Jaya;Chen, Hua-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Civil engineering infrastructure is aging and requires cost-effective maintenance strategies to enable infrastructure systems operate reliably and sustainably. This paper presents an approach for determining risk-cost balanced repair strategy of corrosion damaged reinforced concrete structures with consideration of uncertainty in structural resistance deterioration. On the basis of analytical models of cover concrete cracking evolution and bond strength degradation due to reinforcement corrosion, the effect of reinforcement corrosion on residual load carrying capacity of corroded reinforced concrete structures is investigated. A stochastic deterioration model based on gamma process is adopted to evaluate the probability of failure of structural bearing capacity over the lifetime. Optimal repair planning and maintenance strategies during the service life are determined by balancing the cost for maintenance and the risk of structural failure. The method proposed in this study is then demonstrated by numerical investigations for a concrete structure subjected to reinforcement corrosion. The obtained results show that the proposed method can provide a risk cost optimised repair schedule during the service life of corroded concrete structures.

A Study on the Development of Evaluation Method of Repair Performance for the Repair Method of Reinforced Concrete Structures (철근콘크리트구조물 보수공법의 성능평가 방법 개발에 관한 연구)

  • Kim Yong-Ro;Kim Hyo-Rak;Lee Do-Bum;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.203-206
    • /
    • 2005
  • The purpose of this study is to develop the evaluation method of repair performance for the repair method of reinforced concrete structures deteriorated due to combined deterioration, its results are summarized as the follows. After investigating and analyzing the experimental data of this study and existing research, it is proposed the evaluation method on the repair performance for the repair method of reinforced concrete structures using evaluation method of reinforcing corrosion by combined deterioration accelerated test.

  • PDF

Evaluation of Models for Estimating Shrinkage Stress in Patch Repair System

  • Kristiawan, Stefanus A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • Cracking of repair material due to restraint of shrinkage could hinder the intended extension of serviceability of repaired concrete structure. The availability of model to predict shrinkage stress under restraint condition will be useful to assess whether repair material with particular deformation properties is resistance to cracking or not. The accuracy in the prediction will depend upon reliability of the model, input parameters, testing methods used to characterize the input parameters, etc. This paper reviews a variety of models to predict shrinkage stress in patch repair system. Effect of creep and composite action to release shrinkage stress in the patch repair system are quantified and discussed. Accuracy of the models is examined by comparing predicted and measured shrinkage stress. Simplified model to estimate shrinkage stress is proposed which requires only shrinkage property of repair material as an input parameter.

Studies on Repair of Reinforced Concrete Structures(I) -Repair Materials and Methods- (철근콘크리트 구조물의 보수공법 연구(I) -보수재료 및 공법-)

  • 연규석;정영수;한만엽;이종열;장태연;정경현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.212-218
    • /
    • 1995
  • This study experimentally evaluated the performance of damaged section which was repaired using polymer materials in reinforced flexural flexural members Six different materials, two types of polymer, two types of polymer-cement and two types of cement, were used by means of injection method on prepacked concrete and spray mortar patching method. As results, the repair works could be done easily and surfaces of the repaired section were smooth.

  • PDF

Optimal Repair Method Selection through Neutralization Prediction and LCC Evaluation of a Concrete Structure (콘크리트 구조물의 중성화 및 LCC예측을 통한 최적보수공법 선정)

  • Kang In Seok;Lee Han Seung;Jeong Hae Moon;An Tae Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.511-514
    • /
    • 2005
  • In this study, LCC(Life Cycle Cost) evaluation technique is used for the purpose of accumulation of basic data required for such integrative system construction. We predicted the degradation time of concrete and repair material by neutralization through FEM analysis, and utilized the result for LCC evaluation It turned out that the repair method of construction in the most economical initial measure against degradation and a durable period can be chosen through the LCC evaluation in consideration of the degradation prediction using FEM analysis and the initial construction expense in a durable period and repair expense, and the number of repair times.

  • PDF

A Study on probability of rebar corrosion After repair method of carbonated existing RC structures (탄산화가 진행된 기존 RC구조물의 보수공법 적용후 철근의 부식확률 평가에 관한 연구)

  • Lee, Hyung-Min;Kim, Sang-Youl;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.32-33
    • /
    • 2015
  • As the importance of maintenance of reinforced concrete structure recently has emerged, the attention of durability of structure has been increasing. There are many studies about durability decline especially due to the carbonation. In order to study carbonation progress after surface repair of carbonated concrete, each carbonation penetration velocity from different repair materials of concrete structure is compared through the experiment of carbonation accelerating CO2 concentration to 100%. As carbonation infiltration progress is predicted through this study, the counterplan of service life evaluation will be prepared on selection of repair materials of concrete structure.

  • PDF

Dynamic behavior investigation of scale building renovated by repair mortar

  • Basaran, Hakan
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.531-544
    • /
    • 2015
  • The objective of this study was to examine the effect of repair mortar on the dynamic properties such as natural frequencies, mode shape and damping ratios of two story single span scale reinforced concrete building. To this end, two story single span scale reinforced concrete building having dimensions of 150 cm (width), 150 cm (length) and 135 cm (height) was constructed. Workmanship defects such as separation of material, faulty vibration application and bad gradation of the structure were properly evaluated. Dynamic properties of damaged structure were experimentally determined using Operational Modal Analysis (OMA). Detected defects in the structure were fixed by plastering with repair mortar. Dynamic properties of repaired structure were reevaluated by using the OMA method. Finite element software called Abaqus was used to numerically determine dynamic properties of the structure. Structure modeled as solid was subjected to Linear Perturbation Frequency Method. The changes in dynamic properties of structure after the repair process were comparatively studied by evaluating experimental and numerical results.

Evaluation of Injection Property on the Crack Repair Method by Installing the Packer with Right Angle Drill Type in RC Structure

  • Ko, Jinsoo;Lee, Sungbok;Kim, Byungyun;Seo, Cheho
    • Architectural research
    • /
    • v.11 no.2
    • /
    • pp.27-34
    • /
    • 2009
  • The purpose of this study is to investigate the problem of crack repair materials and methods in existing concrete structure and to propose the effective injection method on crack repair by packer type. The result of this study is as follows. It is investigated that the crack width in the inner matrix of concrete structure is decreased about 30-40% than that in the surface of the concrete structure. Also it is showed that the possibility which could be monolithic with injection part became higher if the injection part is installed near to surface of concrete on the punching method to vertical direction against crack area. The injection of repair material can be poured smoothly under about $10N/mm^2$ pressure on the condition that cracks are monolithic with injection part without dust by drill. The method which is effective injection for a repair material is the punching method in compliance with coredrill. But, the research continuously is necessary about minimum injection pressure.

Flexural Performance and Crack Damage Mitigation of Plain Concrete Beams Layered with Reinforced SHCC Materials with Polyethylene Fibers (폴리에틸렌 단일섬유를 혼입한 SHCC로 휨 보강된 콘크리트 보의 균열손상 제어 및 휨 성능)

  • Kim, June-Su;Lee, Young-Oh;Shim, Young-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.361-368
    • /
    • 2012
  • Required performance for repair materials are strength, ductility, durability and bonding with the substrate concrete. Various kinds of fiber-reinforced cement composites (FRCCs) have been developed and used as repair materials. Strain-hardening cement based composites (SHCC) is one of the effective repair materials that can be used to improve crack-damage tolerance of reinforced concrete (RC) structures. SHCC is a superior FRCC that has multiple cracking characteristic and pseudo strain-hardening behavior. The expansive admixture, which can be used to reduce shrinkage in SHCC materials with less workability by controlling interfacial bonding performance between SHCC and substrate concrete. For the application of SHCC as a repair material to RC structures, this study investigates the flexural performance of expansive SHCC-layered concrete beam. Test variables include the replacement levels of expansive admixture (0 and 10%), repair thickness (30 and 40 mm), and compressive strength of SHCC (30, 70 and 100 MPa). Four point bending tests on concrete beams strengthened with SHCCs were carried out to evaluate the contribution of SHCC on the flexural capacity. The result suggested that expansive SHCC materials can be used for repairing and strengthening of concrete infrastructures.