• Title/Summary/Keyword: Concrete material model

Search Result 1,057, Processing Time 0.027 seconds

Nonlinear Analysis of RC Structures using Assumed Strain RM Shell Element

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • Nonlinear analysis of reinforced concrete structures is carried out by using Reissner-Mindlin (RM) shell finite element (FE). The brittle inelastic characteristic of concrete material is represented by using the elasto-plastic fracture (EPF) material model with the relevant material models such as cracking criteria, shear transfer model and tension stiffening model. In particular, assumed strains are introduced in the formulation of the present shell FE in order to avoid element deficiencies inherited in the standard RM shell FE. The arc-length control method is used to trace the full load-displacement path of reinforced concrete structures. Finally, four benchmark tests are carried out and numerical results are provided as future reference solutions produced by RM shell element with assumed strains.

Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates

  • Rami A. Hawileh;Maha A. Assad;Jamal A. Abdalla; M. Z. Naser
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.163-173
    • /
    • 2024
  • Fiber-reinforced polymers (FRP) have a proven strength enhancement capability when installed into Reinforced Concrete (RC) beams. The brittle failure of traditional FRP strengthening systems has attracted researchers to develop novel materials with improved strength and ductility properties. One such material is that known as polyethylene terephthalate (PET). This study presents a numerical investigation of the flexural behavior of reinforced concrete beams externally strengthened with PET-FRP systems. This material is distinguished by its large rupture strain, leading to an improvement in the ductility of the strengthened structural members compared to conventional FRPs. A three-dimensional (3-D) finite element (FE) model is developed in this study to predict the load-deflection response of a series of experimentally tested beams published in the literature. The numerical model incorporates constitutive material laws and bond-slip behavior between concrete and the strengthening system. Moreover, the validated model was applied in a parametric study to inspect the effect of concrete compressive strength, PET-FRP sheet length, and reinforcing steel bar diameter on the overall performance of concrete beams externally strengthened with PET-FRP.

Numerical modeling of an orthotropic RC slab band system using the Barcelona model

  • Kossakowski, Pawel G.;Uzarska, Izabela
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • Numerical modeling of reinforced concrete structures is a difficult engineering problem, primarily because of the material inhomogeneity. The behaviour of a concrete element with reinforcement can be analyzed using, for example, the Barcelona model, which according to the literature, is one of the most suitable models for this purpose. This article compares the experimental data obtained for an orthotropic concrete slab band system with those predicted numerically using Concrete Damage Plasticity model. Abaqus package was used to perform the calculations.

Examination of 3D long-term viscoplastic behaviour of a CFR dam using special material models

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2019
  • Time dependent creep settlements are one of the most important causes of material deteriorations for the huge water structures such as concrete faced rockfill dams (CFRDs). For this reason, performing creep analyses of CFRDs is vital important for monitoring and evaluating of the future and safety of such dams. In this study, it is observed how changes viscoplastic behaviour of a CFR dam depending the time. Ilısu dam that is the longest concrete faced rockfill dam (1775 m) in the world is selected for the three dimensional (3D) analyses. 3D finite difference model of Ilısu dam is modelled using FLAC3D software based on the finite difference method. Two different special creep material models are considered in the numerical analyses. Wipp-creep viscoplastic material model and burger-creep viscoplastic material model were rarely used for the creep analyses of CFRDs in the last are taken into account for the concrete slab and rockfill materials-foundation, respectively. Moreover, interface elements are defined between the concrete slab-rockfill materials and rockfill materials-foundation to provide interaction condition for 3D model. Firstly, dam and foundation are collapsed under its self-weight and static behaviour of the dam is evaluated for the empty reservoir conditions. Then, reservoir water is modelled considering maximum water level of the dam and time-dependent creep analyses are performed for maximum reservoir condition. In this paper, maximum principal stresses, vertical-horizontal displacements and pore pressures that may occur on the dam body surface during 30 years (from 2017 to 2047) are evaluated in detail. According to numerical analyses, empty and maximum reservoir conditions of Ilısu dam are compared with each other in detail. 4 various nodal points are selected under the concrete slab to better seen viscoplastic behaviour changes of the dam and viscoplastic behaviour differences of these points during 30 years are graphically presented. It is clearly seen that horizontal-vertical displacements and principal stresses for maximum reservoir condition are more than the empty reservoir condition of the dam and significant pore pressures are observed during 30 years for maximum reservoir condition. In addition, horizontal-vertical displacements, principal stresses and pore pressures for 4 nodal points obviously increased until a certain time and changes decreased after this time.

AHP-Based Evaluation Model for Optimal Selection Process of Patching Materials for Concrete Repair: Focused on Quantitative Requirements

  • Do, Jeong-Yun;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.87-100
    • /
    • 2012
  • The process of selecting a repair material is a typical one of multi-criteria decision-making (MCDM) problems. In this study Analytical Hierarch Process was applied to solve this MCDM problem. Many factors affecting a process to select an optimal repair material can be classified into quantitative and qualitative requirements and this study handled only quantitative items. Quantitative requirements in the optimal selection model for repair material were divided into two parts, namely, the required chemical performance and the required physical performance. The former is composed of alkali-resistance, chloride permeability and electrical resistivity. The latter is composed of compressive strength, tensile strength, adhesive strength, drying shrinkage, elasticity and thermal expansion. The result of the study shows that this method is the useful and rational engineering approach in the problem concerning the selection of one out of many candidate repair materials even if this study was limited to repair material only for chloride-deteriorated concrete.

Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: an experimental, micromechanical and numerical study

  • Roth, M. Jason;Slawson, Thomas R.;Flores, Omar G.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.169-190
    • /
    • 2010
  • The focus of this research effort was characterization of the flexural and tensile properties of a specific ultra-high-strength, fiber-reinforced concrete material. The material exhibited a mean unconfined compressive strength of approximately 140 MPa and was reinforced with short, randomly distributed alkali resistant glass fibers. As a part of the study, coupled experimental, analytical and numerical investigations were performed. Flexural and direct tension tests were first conducted to experimentally characterize material behavior. Following experimentation, a micromechanically-based analytical model was utilized to calculate the material's tensile failure response, which was compared to the experimental results. Lastly, to investigate the relationship between the tensile failure and flexural response, a numerical analysis of the flexural experiments was performed utilizing the experimentally developed tensile failure function. Results of the experimental, analytical and numerical investigations are presented herein.

Material modeling of steel fiber reinforced concrete

  • Thomee, B.;Schikora, K.;Bletzinger, K.U.
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.197-212
    • /
    • 2006
  • Modeling of physically non-linear behavior becomes more and more important for the analysis of SFRC structures in practical applications. From this point of view we will present an effective, three-dimensional constitutive model for SFRC, that is also easy to implement in commercial finite element programs. Additionally, the finite element analysis should only require standard material parameters which can be gained easily from conventional experiments or which are specified in appropriate building codes. Another important point is attaining the material parameters from experimental data. The procedures to determine the material parameters proposed in appropriate codes seem to be only approximations and are unsuitable for precise structural analysis. Therefore a finite element analysis of the test itself is used to get the material parameters. This process is also denoted as inverse analysis. The efficiency of the proposed constitutive model is demonstrated on the basis of numerical examples and their comparison to experimental results. In the framework of material parameter identification the idea of a new, indirect tension testing procedure, the "Modified Tension Test", is adopted and extended to an easy-to-carry-out tension test for steel fiber reinforced concrete specimens.

Study on The Heat Transfer and Mechanical Modeling of Fiber-Mixed High Strength Concrete (섬유혼입 고강도 콘크리트의 열전달 및 역학적 거동 해석모델에 대한 연구)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2011
  • To improve fire-resistance of a high strength concrete against spalling under elevated temperature, fibers can be mixed to provide flow paths of evaporated water to the surface of concrete when heated. In this study, the experiment of a column under fire and mechanical loads is conducted and the material model for predicting temperature of reinforcement steel bar and mechanical behavior of fiber-mixed high strength concrete is suggested. The material model in previous studies is modified by incorporating physical behavior of internal concrete and thermal characteristics of concrete at the elevated temperature. Thermo-mechanical analysis of the fiber-mixed high strength concrete column is conducted using the calibrated material model. The performance of the proposed material model is confirmed by comparing thermo-mechanical analysis results with the experiment of a column under fire and mechanical loads.

Nonlinear Analysis of Nuclear Containment Wall Element using Standard 8-node Solid Element (표준 8절점 고체요소를 이용한 원전 격납건물 벽체요소의 비선형해석)

  • Lee Hong-Pyo;Choun Young-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.151-158
    • /
    • 2005
  • For the safety analysis of large structures such as nuclear containment buildings, we conventionally prefer to use analytical approach using finite element method rather than empirical test. Therefor, this paper is mainly focused to develop low-order solid finite element model with the elasto-plastic material model for the safety analysis of nuclear containment building. Drucker-Prager failure criteria in uncracked concrete and maximum tensile stress criteria in cracked concrete are used to model the constitutive behavior of concrete. The concrete material model takes into account the aspects of tensile strain, compression strength reduction of concrete and shear transfer to improve the accuracy of the finite element analysis. Finally, numerical simulation to compare the performance of the developed model with experimental results is employed. The numerical results in this study agree very well with the experimental data.

  • PDF

Heat Transfer Modeling of Fiber-embedded Fire-Resistant High Strength Concrete (섬유혼입 내화 고강도 콘크리트의 열전달 모델)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • High strength concrete used for large structures is vulnerable to fire due to explosive spalling when it is heated. Recently, various research is conducted to enhance the fire-resistance of the high strength concrete by reducing the explosive spalling at the elevated temperature. In this study, a heat transfer analysis model is proposed for a fiber-embedded fire-resistant high strength concrete. The material model of the fire-resistant high strength concrete is selected from the calibrated material model of a high strength concrete incorporating thermal properties of fibers and physical behavior of internal concrete at the elevated temperature. By comparing the simulated results using the calibrated model with the experimental results, the heat transfer model of the fiber-embedded fire-resistant high strength concrete is proposed.