• Title/Summary/Keyword: Concrete material model

Search Result 1,060, Processing Time 0.025 seconds

Confined concrete model of circular, elliptical and octagonal CFST short columns

  • Patel, Vipulkumar I.;Uy, Brian;Prajwal, K.A.;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.497-520
    • /
    • 2016
  • The confined concrete stress-strain curves utilised in computational models of concrete-filled steel tubular (CFST) columns can have a significant influence on the accuracy of the predicted behaviour. A generic model is proposed for predicting the stress-strain behaviour of confined concrete in short circular, elliptical and octagonal CFST columns subjected to axial compression. The finite element (FE) analysis is carried out to simulate the concrete confining pressure in short circular, elliptical and octagonal CFST columns. The concrete confining pressure relies on the geometric and material parameters of CFST columns. The post-peak behaviour of the concrete stress-strain curve is determined using independent existing experimental results. The strength reduction factor is derived for predicting the descending part of the confined concrete behaviour. The fibre element model is developed for the analysis of circular, elliptical and octagonal CFST short columns under axial loading. The FE model and fibre element model accounting for the proposed concrete confined model is verified by comparing the computed results with experimental results. The ultimate axial strengths and complete axial load-strain curves obtained from the FE model and fibre element model agree reasonably well with experimental results. Parametric studies have been carried out to examine the effects of important parameters on the compressive behaviour of short circular, elliptical and octagonal CFST columns. The design model proposed by Liang and Fragomeni (2009) for short circular, elliptical and octagonal CFST columns is validated by comparing the predicted results with experimental results.

A damage model formulation: unilateral effect and RC structures analysis

  • Pituba, Jose J.C.
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.709-733
    • /
    • 2015
  • This work deals with a damage model formulation taking into account the unilateral effect of the mechanical behaviour of brittle materials such as concrete. The material is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution. Two damage tensors governing the stiffness in tension or compression regimes are introduced. A new damage tensor in tension regimes is proposed in order to model the diffuse damage originated in prevails compression regimes. Accordingly with micromechanical theory, the constitutive model is validate when dealing with unilateral effect of brittle materials, Finally, the proposed model is applied in the analyses of reinforced concrete framed structures submitted to reversal loading. The numerical results have shown the good performance of the modelling and its potentialities to simulate practical problems in structural engineering.

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

Effect of position of hexagonal opening in concrete encased steel castellated beams under flexural loading

  • Velrajkumar, G.;Muthuraj, M.P.
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.95-106
    • /
    • 2020
  • Castellated beams fabricated from standard I-sections are being used for several structural applications such as commercial and industrial buildings, multistory buildings, warehouses and portal frames in view of numerous advantages. The advantages include enhanced moment of inertia, stiffness, flexural resistance, reduction in weight of structure, by passing the used plate girders, the passage of service through the web openings etc. In the present study, experimental and numerical investigations were carried out on concrete encased steel castellated beams with hexagonal openings under flexural loading. Various positions of openings such as along the neutral axis, above the neutral axis and below the neutral axis were considered for the study. From the experimental findings, it has been observed that the load-carrying capacity of the castellated beam with web opening above neutral axis is found to be higher compared to other configurations. Nonlinear finite element analysis was performed by using general purpose finite element software ABAQUS considering the material nonlinearities. Concrete damage plasticity model was employed to model the nonlinearity of concrete and elasto-plastic model for steel. It has been observed that FE model could able to capture the behaviour of concrete encased steel castellated beams and the predicted values are in good agreement with the corresponding experimental values.

Service life prediction of chloride-corrosive concrete under fatigue load

  • Yang, Tao;Guan, Bowen;Liu, Guoqiang;Li, Jing;Pan, Yuanyuan;Jia, Yanshun;Zhao, Yongli
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • Chloride corrosion has become the main factor of reducing the service life of reinforced concrete structures. The object of this paper is to propose a theoretical model that predicts the service life of chloride-corrosive concrete under fatigue load. In the process of modeling, the concrete is divided into two parts, microcrack and matrix. Taking the variation of mcirocrack area caused by fatigue load into account, an equation of chloride diffusion coefficient under fatigue load is established, and then the predictive model is developed based on Fick's second law. This model has an analytic solution and is reasonable in comparison to previous studies. Finally, some factors (chloride diffusion coefficient, surface chloride concentration and fatigue parameter) are analyzed to further investigate this model. The results indicate: the time to pit-to-crack transition and time to crack growth should not be neglected when predicting service life of concrete in strong corrosive condition; the type of fatigue loads also has a great impact on lifetime of concrete. In generally, this model is convenient to predict service life of chloride-corrosive concrete with different water to cement ratio, under different corrosive condition and under different types of fatigue load.

Behaviour of lightweight aggregate concrete-filled steel tube under horizontal cyclic load

  • Fu, Zhongqiu;Ji, Bohai;Wu, Dongyang;Yu, Zhenpeng
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.717-729
    • /
    • 2019
  • A horizontal cyclic test was carried out to study the seismic performance of lightweight aggregate concrete filled steel tube (LACFST). The constitutive and hysteretic model of core lightweight aggregate concrete (LAC) was proposed for finite element simulation. The stress and strain changes of the steel tube and concrete filled inside were measured in the experiment, and the failure mode, hysteresis curve, skeleton curve, and strain curve of the test specimens were obtained. The influence of axial compression ratio, diameter-thickness ratio and material strength were analysed based on finite element model. The results show that the hysteresis curve of LACFST indicated favourable ductility, energy dissipation, and seismic performance. The LACFST failed when the concrete in the bottom first crushed and the steel tube then bulged, thus axial force imposed by prestressing was proved to be feasible. The proposed constitutive model and hysteretic model of LAC under the constraint of its steel tube was reliable. The bearing capacity and ductility of the specimen increase significantly with increasing thickness of the steel tube. The bearing capacity of the member improves while the ductility and energy dissipation performance slightly decreased with the increasing strength of the steel and concrete.

Comparison of Future Dangerousness Prediction Models for Long-Term Behaviors of Concrete Cable-Stayed Bridges (콘크리트 사장교 장기거동에 대한 장래 위험성 예측 모델의 비교)

  • Lee, Hwan Woo;Kang, Dae Hui
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.3
    • /
    • pp.51-57
    • /
    • 2008
  • The long-term behaviors of prestressed concrete cable-stayed bridges are considerably influenced by the time dependant material characteristics such as creep and shrinkage. This study investigated the influences of the change of relative humidity by application of the CEB-FIP model and ACI model, which are generally used in the prediction of long-term behavior of concrete structures. In case of the moment of girder, CEB-FIP model predicted a bigger effect of relative humidity change than the ACI model. Furthermore, the effect was significant. Also, the long-term behaviors between these models were different each other even under the same material condition. Therefore, the prediction of the long-term behavior should be compensated after comparative analysis with the results of material tests of each construction site and between the different models.

  • PDF

Nonlinear analysis and tests of steel-fiber concrete beams in torsion

  • Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2000
  • An analytical approach for the prediction of the behaviour of steel-fiber reinforced concrete beams subjected to torsion is described. The analysis method employs a special stress-strain model with a non-linear post cracking branch for the material behaviour in tension. Predictions of this model for the behaviour of steel-fiber concrete in direct tension are also presented and compared with results from tests conducted for this reason. Further in this work, the validation of the proposed torsional analysis by providing comparisons between experimental curves and analytical predictions, is attempted. For this purpose a series of 10 steel-fiber concrete beams with various cross-sections and steel-fiber volume fractions tested in pure torsion, are reported here. Furthermore, experimental information compiled from works around the world are also used in an attempt to establish the validity of the described approach based on test results of a broad range of studies. From these comparisons it is demonstrated that the proposed analysis describes well the behaviour of steel-fiber concrete in pure torsion even in the case of elements with non-rectangular cross-sections.

On the Implementation of Fuzzy Arithmetic for Prediction Model Equation of Corrosion Initiation

  • Do Jeong-Yun;Song Hun;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1045-1051
    • /
    • 2005
  • For critical structures and application, where a given reliability must be met, it is necessary to account for uncertainties and variability in material properties, structural parameters affecting the corrosion process, in addition to the statistical and decision uncertainties. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters and the fuzziness of the corrosion time is determined by the fuzzy arithmetic of interval arithmetic and extension principle

Nonlinear Finite Element Analysis of High Piers (고강도 철근 콘크리트 고교각의 비선형 유한요소해석)

  • Lee, Heon-Min;Seong, Dae-Jung;Kim, Tae-Hoon;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.490-493
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of reinforced high-strength concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The increase of concrete strength due to the lateral confining reinforcement has been also taken into account to model the confined high-strength concrete. The proposed numerical method for the inelastic behavior of reinforced high-strength concrete bridge columns is verified by comparison with reliable experimental results.

  • PDF