• Title/Summary/Keyword: Concrete construction

Search Result 8,392, Processing Time 0.027 seconds

Study on the Strategy for Managing Aggregate Supply and Demand in Gyeongsangbuk-do, South Korea (경상북도 골재수요-공급 관리 전략 연구)

  • Jin-Young Lee;Sei Sun Hong;Chul Seoung Baek
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.161-175
    • /
    • 2024
  • Aggregate typically refers to sand and gravel formed by the transportation of rocks in rivers or artificially crushed, constituting a core resource in the construction industry. Gyeongsangbuk-do, the largest administrative area in South Korea, produces various sources of gravel, including forest, land (excluding other sources), river, and crushed stone. As of 2022, it has extracted approximately 6.96 million cubic meters of aggregate, with permitted production totaling around 4.07 million cubic meters and reported production of about 2.88 million cubic meters. The aggregate demand in Gyeongsangbuk-do is estimated to be 12.39 million cubic meters according to the estimation method in Ready-Mix Concrete. From the supply perspective, about 120 extraction sites are operational, with most municipalities maintaining an appropriate balance between aggregate demand and supply. However, in some areas, there is inbound and outbound transportation of aggregate to neighboring regions. Regions with significant inbound and outbound aggregate transportation in Gyeongsangbuk-do are areas connected to Daegu Metropolitan City and Pohang City along the Gyeongbu rail line, showing a high correlation with population distribution. Gyeongsangbuk-do faces challenges such as population decline, aging rural areas, and insufficient balanced regional development. Analysis using GIS reveals these trends in gravel demand and supply. Currently in this study, Gyeongsangbuk-do meets its demand for aggregate through the supply of various aggregate sources, maintaining stable aggregate procurement. River and terrestrial aggregates may be sustained as short-term supply strategies due to the difficulty of longterm development. Considering the reliance on raw material supply for selective crushing, it suggests the need for raw material management to maintain stability. Gyeongsangbuk-do highlights quarries in the forest as an important resource for sustainable aggregate supply, advocating for the development of large-scale aggregate quarries as a long-term alternative. These research findings are expected to provide valuable insights for formulating strategies for sustainable management and stable utilization of aggregate resources.

An Empirical Study on Statistical Optimization Model for the Portfolio Construction of Sponsored Search Advertising(SSA) (키워드검색광고 포트폴리오 구성을 위한 통계적 최적화 모델에 대한 실증분석)

  • Yang, Hognkyu;Hong, Juneseok;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.167-194
    • /
    • 2019
  • This research starts from the four basic concepts of incentive incompatibility, limited information, myopia and decision variable which are confronted when making decisions in keyword bidding. In order to make these concept concrete, four framework approaches are designed as follows; Strategic approach for the incentive incompatibility, Statistical approach for the limited information, Alternative optimization for myopia, and New model approach for decision variable. The purpose of this research is to propose the statistical optimization model in constructing the portfolio of Sponsored Search Advertising (SSA) in the Sponsor's perspective through empirical tests which can be used in portfolio decision making. Previous research up to date formulates the CTR estimation model using CPC, Rank, Impression, CVR, etc., individually or collectively as the independent variables. However, many of the variables are not controllable in keyword bidding. Only CPC and Rank can be used as decision variables in the bidding system. Classical SSA model is designed on the basic assumption that the CPC is the decision variable and CTR is the response variable. However, this classical model has so many huddles in the estimation of CTR. The main problem is the uncertainty between CPC and Rank. In keyword bid, CPC is continuously fluctuating even at the same Rank. This uncertainty usually raises questions about the credibility of CTR, along with the practical management problems. Sponsors make decisions in keyword bids under the limited information, and the strategic portfolio approach based on statistical models is necessary. In order to solve the problem in Classical SSA model, the New SSA model frame is designed on the basic assumption that Rank is the decision variable. Rank is proposed as the best decision variable in predicting the CTR in many papers. Further, most of the search engine platforms provide the options and algorithms to make it possible to bid with Rank. Sponsors can participate in the keyword bidding with Rank. Therefore, this paper tries to test the validity of this new SSA model and the applicability to construct the optimal portfolio in keyword bidding. Research process is as follows; In order to perform the optimization analysis in constructing the keyword portfolio under the New SSA model, this study proposes the criteria for categorizing the keywords, selects the representing keywords for each category, shows the non-linearity relationship, screens the scenarios for CTR and CPC estimation, selects the best fit model through Goodness-of-Fit (GOF) test, formulates the optimization models, confirms the Spillover effects, and suggests the modified optimization model reflecting Spillover and some strategic recommendations. Tests of Optimization models using these CTR/CPC estimation models are empirically performed with the objective functions of (1) maximizing CTR (CTR optimization model) and of (2) maximizing expected profit reflecting CVR (namely, CVR optimization model). Both of the CTR and CVR optimization test result show that the suggested SSA model confirms the significant improvements and this model is valid in constructing the keyword portfolio using the CTR/CPC estimation models suggested in this study. However, one critical problem is found in the CVR optimization model. Important keywords are excluded from the keyword portfolio due to the myopia of the immediate low profit at present. In order to solve this problem, Markov Chain analysis is carried out and the concept of Core Transit Keyword (CTK) and Expected Opportunity Profit (EOP) are introduced. The Revised CVR Optimization model is proposed and is tested and shows validity in constructing the portfolio. Strategic guidelines and insights are as follows; Brand keywords are usually dominant in almost every aspects of CTR, CVR, the expected profit, etc. Now, it is found that the Generic keywords are the CTK and have the spillover potentials which might increase consumers awareness and lead them to Brand keyword. That's why the Generic keyword should be focused in the keyword bidding. The contribution of the thesis is to propose the novel SSA model based on Rank as decision variable, to propose to manage the keyword portfolio by categories according to the characteristics of keywords, to propose the statistical modelling and managing based on the Rank in constructing the keyword portfolio, and to perform empirical tests and propose a new strategic guidelines to focus on the CTK and to propose the modified CVR optimization objective function reflecting the spillover effect in stead of the previous expected profit models.