• Title/Summary/Keyword: Concrete confinement

Search Result 650, Processing Time 0.036 seconds

Stress-Strain Model for Laterally Confined Concrete : Part II. Rectangular Sectional Members (횡구속 콘크리트의 압축 응력-변형률 모델 : Part II. 사각단면 부재)

  • Sun, Chang Ho;Jeong, Hyeok Chang;Kim, Ick hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.59-67
    • /
    • 2017
  • Due to a lack of the hoop action of lateral reinforcements the effective confining force in rectangular sections reduces compared to circular ones. Therefore, the stress-strain model obtained from the experimental data with circular sections overestimates the lateral confinement effect in rectangular sections, which evaluates seismic safety margin of overall structural system excessively. In this study experiments with laterally-confined square sections have been performed and the characteristic values composing stress-strain model have been analyzed. With introduction of section coefficients, in addition, the new unified stress-strain model applicable to square sections as well as circular ones has been proposed.

Eartqyake-Resistance of SlenderShear Wall With no Boundary Confinement (단부 횡보강이 없는 세장한 전단벽의 내진성능)

  • 박홍근;강수민;조봉호;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.375-380
    • /
    • 2000
  • Experimental and numerical studies were done to investigate seismic performance of slender sheat wall with no boundary confinement. 1/3 scale-specimens that model the plastic region of long slender shear walls subjected to combined axial load and bending moment were rested to investigate strength, ductility, capacity of energy dissipation and strain distribution. The experimental results show that the slender walls fail due to early crushing in the compressive boundary, and then have very low ductility. The measured maximum compressive strain is 0.0021, which is much less then 0.004 being commonly used for estimation of ductility. The experimental results indicates that the maximum compressive strain is not a fixed value but is affected by moment gradient along the shear wall height and distance from neutral axis to the extreme compressive fiber.

  • PDF

Experimental Evaluation for Seismic Performance of RC Bridge Piers with FRP Confinement (FRP 횡보강근을 이용한 RC 교각의 내진성능 평가 실험)

  • 정영수;박진영;박창규;서진원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.377-384
    • /
    • 2003
  • Recently, there are much concerns about new and innovative transverse materials which could be used instead of conventional transverse steel in reinforced concrete bridge piers. FRP materials could be substituted for conventional transverse steel because of their sufficient strength, light weight, easy fabrication, and useful applicability to any shapes of pier sections, such as rectangular or circular sections. The objective of this research is to evaluate the seismic performance of reinforced concrete bridge pier specimens with FRP transverse reinforcement by means of the Quasi-Static test. In the first task, test columns were made using FRP rope, but these specimens appeared to fail at low displacement ductility levels due to insufficient confinement of strand extension itself. Therefore, the second task was to evaluate the seismic performance of test specimens transversely confined with FRP band. Although FRP banded specimens showed lower seismic performance than the specimen with spiral reinforcing steel, it satisfied with the response modification factor, 3, required for the single column of Korea bridge roadway design code. It was concluded that FRP band could be efficiently substituted for conventional reinforcing steel.

  • PDF

Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect (구속효과를 고려한 철근 콘크리트 기둥의 모멘트-곡률 관계 단순모델)

  • Kwak, Min-Kyoung;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The present study simplified the moment-curvature relationship to straightforwardly determine the flexural behavior of reinforced concrete (RC) columns. For the idealized column section, moments and neutral axis depths at different stages(first flexural crack, yielding of tensile reinforcing bar, maximum strength, and 80% of the maximum strength at the descending branch) were derived on the basis of the equilibrium condition of forces and compatibility condition. Concrete strains at the extreme compression fiber beyond the maximum strength were determined using the stress-strain relationship of confined concrete, proposed by Kim et al. The lateral load-displacement curves converted from the simplified moment-curvature relationship of columns are well consistent with test results obtained from column specimens under various parameters. The moments and the corresponding neutral axis depth at different stages were formulated as a function of longitudinal reinforcement and transverse reinforcement indices and/or applied axial load index. Overall, curvature ductility of columns was significantly affected by the axial load level as well as concrete compressive strength and the amount of longitudinal and transverse reinforcing bars.

Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns

  • Han, Lin-Hai;Zhao, Xiao-Ling;Tao, Zhong
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.51-74
    • /
    • 2001
  • A series of tests on concrete-filled SHS (Square Hollow Section) stub columns (twenty), columns (eight) and beam-columns (twenty one) were carried out. The main parameters varied in the tests are (1) Confinement factor (${\xi}$) from 1.08 to 5.64, (2) concrete compression strength from 10.7MPa to 36.6MPa, (3) tube width to thickness ratio from 20.5 to 36.5. (4) load eccentricity (e) from 15 mm to 80 mm and (5) column slenderness (${\lambda}$) from 45 to 75. A mechanics model is developed in this paper for concrete-filled SHS stub columns, columns and beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and filled concrete. The predicted load versus axial strain relationship is in good agreement with stub column test results. Simplified models are derived for section capacities and modulus in different stages of the composite sections. The predicted beam-column strength is compared with that of 331 beam-column tests with a wide range of parameters. A good agreement is obtained. The predicted load versus midspan deflection relationship for beam-columns is in good agreement with test results. A simplified model is developed for calculating the member capacity of concrete-filled SHS columns. Comparisons are made with predicted columns strengths using the existing codes such as LRFD (AISC 1994), AIJ (1997), and EC4 (1996). Simplified interaction curves are derived for concrete-filled beam-columns.

Suggestion for Confinement Steel Ratio of Rectangular RC Bridge Piers (사각단면 철근콘크리트 교각의 심부구속철근비 제안)

  • Park, Chang-Kyu;Chung, Young-Soo;Yun, Sang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.749-757
    • /
    • 2006
  • Many losses of life and extensive damage of social infrastructures have occurred due to moderate and strong earthquakes all over the world. In this research various design parameters have been evaluated to develop a rational seismic design code of rectangular reinforced concrete(RC) bridge piers. It was confirmed from this study that the axial force ratio and longitudinal steel ratio were most influencing design parameters on the seismic displacement ductility from experimental results of 54 rectangular RC bridge piers, which were tested at domestic and foregin countries. However, these important parameters are not considered in the confinement steel ratio of Korea Highway Bridge Design Specification(KHBDS). The objective of this study is to propose a rational design provision for the transverse reinforcement of rectangular RC bridge piers. New confinement steel ratio is proposed by reflecting the effect of the axial force and longitudinal steel into the current code of KHBDS. furthermore, minimum transverse confinement steel ratio is also proposed to avoid a probable buckling of longitudinal reinforcing steels of RC bridge piers with a relatively low axial force. New practical code can alleviate the rebar congestion in the plastic hinge region of RC bridge pier, which contributes to construct RC bridge piers in a simple and economic way.

Aseismatic Performance Analysis of Circular RC Bridge Piers II. Suggestion for Transverse Steel Ratio (원형 철근콘크리트 교각의 내진성능 II. 심부구속철근비 제안)

  • Park Chang-Kyu;Lee Dae-Hyoung;Lee Beom-Gi;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.775-784
    • /
    • 2005
  • In this research, major design factors have been evaluated for the establishment of the rational seismic design code of circular RC(reinforced concrete) bridge pier Previous experimental researches have drawn a conclusion that transverse confinement reinforcements have been excessively used for RC bridge piers in Korea. Thus, the objective of this study is to propose a rational design equation for transverse reinforcements of RC bridge piers in Korea which would be classified as a low or moderate seismic region. Newly proposed equation further considers the effect of the axial force ratio and the longitudinal steel ratio. Minimum transverse confinement steel ratio is also proposed to avoid probable buckling of the longitudinal reinforcing steels subjected to relatively low axial force. It is thought that these new codes seem to alleviate the rebar congestion in the plastic hinge region of RC bridge piers which contribute to the enhancement of constructibility and economization for RC bridge construction.

Effect of BFRP Wrapping on Seismic Behavior of Rectangular RC Columns (BFRP 보강이 직사각형 단면 철근콘크리트 기둥의 지진거동에 미치는 영향)

  • Lee, Hyerin;Cho, Junghyun;Lee, Seung-Geon;Lee, Su-Hyung;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.153-160
    • /
    • 2020
  • Columns are one of the most critical parts of a structural system subjected to earthquake excitations. In this regard, extensive experimental studies have been conducted to evaluate the effect of fiber reinforced polymer (FRP) wrapping on the seismic performance of reinforced concrete (RC) columns. Among them, many studies focused on the behavior of circular or square RC columns strengthened with CFRP or GFRP sheets. Since the cross-sectional shape affects confinement by FRP wrapping, its strengthening effect and final damage pattern may differ with shapes. In this study, a series of cyclic tests was conducted to investigate the seismic behavior of rectangular reinforced concrete columns strengthened with basalt-based fiber reinforced polymer (BFRP) sheets and composite fiber panels. The result shows that the effect of strengthening is not significant, and it implies a little increase of confinement by BFRP sheets and composite fiber panels, which is considered partly due to the cross-sectional shape of the columns.

Influence of Concrete Strength and Lateral Ties on Behavior of High-Strength Concrete Columns (고강도 콘크리트 기둥의 거동에 미치는 콘크리트 강도와 띠철근의 영향)

  • Lee, Young-Ho;Chung, Heon-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.245-253
    • /
    • 2002
  • This study was focused on the effect of concrete strength and lateral ties of concrete columns using high-strength concrete. Thirty-six concrete columns with 20cm square cross-section were tested. Experimental parameters included the concrete strength, the distribution of longitudinal bars and the volumetric ratio, yield strength, spacing of lateral ties. From the experiments, we found that: 1) the increasing rate of the strength and ductility of concrete columns caused by confinement of lateral ties was decreasing, as the concrete strength increased. 2) The high volumetric ratio and the reduction of tie spacing had a tendency to enhance the strength and improve the ductility. 3) The high-strength concrete columns required high volumetric ratio of lateral ties to maintain the proper strength and ductility. It was observed that the current AIK design code to specify the maximum tie spacing of high-strength concrete columns led to the poor strength and ductility for seismic design.

Torsional Behaviour of Concrete Filled Circular Steel Tube Column Considering Confinement Effect (구속효과를 고려한 콘크리트 충전 원형강관 기둥의 비틀림 거동)

  • Yun, Bok Hee;Lee, Eun Taik;Park, Ji Young;Jang, Kyong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.529-541
    • /
    • 2004
  • Concrete filled steel tube structures were recently used in constructing high-rise buildings due to their effectiveness. Studies on concrete filled steel tubes have been focused on the experiments of uni-axial compression and bending and eccentric compression. There were also a few studies that investigated CFT member behavior under combined compression and torsion. The behavior of a circular CFT column under combined torsion and compression was theoretically investigated, considering the confinement of steel tubes on the concrete, the softening of the concrete, and the spiral effect, which were the dominant factors that influenced compression and torsion strength. The biaxial stress effects due to diagonal cracking were also taken into account. By applying those factors to compatibility and equilibrium conditions, the basic equation was derived, and the equation could be used to incorporate the torsional behavior of the entire loading history of the CFT member.