• Title/Summary/Keyword: Concrete confinement

Search Result 651, Processing Time 0.025 seconds

The Experimental Study on Stress-Strain Relation of Confined Concrete with Different Transverse Reinforcements (횡철근 상세에 따른 횡구속 콘크리트의 응력-변형률에 관한 연구)

  • Jeong Hyeok Chang;Sun Chang Ho;Kim Ick Hyun;Lee Jong Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • In order to achieve target ductility the stress-strain relation of confined concrete is indispensible. In this study the specimens with different transverse reinforcement ratios were tested. The test results were compared with empirical equations and the characteristics of confinement effect were investigated.

  • PDF

Characteristics of stress-strain relations of confined rectangular sectional concrete elements with various lateral reinforcement ratios and cross-ties (횡철근비와 cross-tie가 다른 횡구속 사각단면 콘크리트의 응력-변형률 특성)

  • Jeong, Hyeok-Chang;Park, Tae-Soo;Sun, Chang-Ho;Kim, Ick-Hyun;Lee, Jong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.89-92
    • /
    • 2006
  • In order to achieve target ductility the stress-strain relation of confined concrete is indispensible. In this study the specimens with different transverse reinforcement ratios were tested. The test results were compared with empirical equations and the characteristics of confinement effect were investigated.

  • PDF

Transverse reinforcement for confinement at plastic hinge of circular composite hollow RC columns

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Park, Woo-Sun;Kang, Young Jong
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.387-406
    • /
    • 2016
  • Confined transverse reinforcement was arranged in a plastic hinge region to resist the lateral load that increased the lateral confinement effect in the bridge substructure. Columns increased the seismic performance through securing stiffness and ductility. The calculation method of transverse reinforcements at plastic hinges is reported in the AASHTO-LRFD specification. This specification was only proposed for solid reinforced concrete (RC) columns. Therefore, if this specification is applied for another column as composite column besides the solid RC column, the column cannot be properly evaluated. The application of this specification is particularly limited for composite hollow RC columns. The composite hollow RC column consists of transverse, longitudinal reinforcements, cover concrete, core concrete, and an inner tube inserted in the hollow face. It increases the ductility, strength, and stiffness in composite hollow RC columns. This paper proposes a modified equation for economics and rational design through investigation of displacement ductility when applying the existing specifications at the composite hollow RC column. Moreover, a parametric study was performed to evaluate the detailed behavior. Using these results, a calculation method of economic transverse reinforcements is proposed.

Seismic Behavior of Concrete Cylinders Reinforced by Outside Lateral Hoops (외측 횡 구속된 콘크리트 공시체의 내진 거동)

  • Choi, Eunsoo;Kim, Byeong Hwa;Shin, Jae Kwan;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • This paper investigates experimentally the confinement effect on concrete. For this purpose, outside lateral reinforcement members made of stainless steel and GFRP were employed. Then, uniaxial compressive tests on concrete cylinders incorporating the members were conducted. A total of 30 cylinder specimens, specifically, 6 unconfined specimens, 12 specimens confined by stainless steel and 12 specimens confined by GFRP, were fabricated. The failure patterns of both unconfined and confined specimens were assessed and discussed based on experimental results. The results proved that the maximum stress and corresponding strains of the cylinders confined using the proposed hoops are increased in comparison with those of the unconfined. This supports that the current work can be used for retrofitting concrete members and structures and thus may lead to increased stability of such structures.

Seismic Performance Assessment of Hollow Circular Reinforced Concrete Bridge Columns with Confinement Steel (중공원형 철근콘크리트 교각의 횡방향철근에 따른 내진성능평가)

  • Kim, Tae-Hoon;Kang, Hyeong-Taek
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.13-25
    • /
    • 2012
  • The purpose of this study was to investigate the seismic behavior of hollow circular reinforced concrete bridge columns with confinement steel, and to develop improved seismic design criteria. Three hollow circular columns were tested under a constant axial load and a quasi-static, cyclically reversed horizontal load. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. The numerical method used gives a realistic prediction of the seismic performance throughout the loading cycles for the several test specimens investigated. Based on the experimental and analytical results, design recommendations are presented to improve current practice in the design and construction of hollow circular reinforced concrete bridge columns.

Nonlinear finite element modeling of FRP-wrapped UHPC columns

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.413-429
    • /
    • 2013
  • The primary aim of this study is to develop a three dimensional finite element (FE) model to predict the axial stress-strain relationship and ultimate strength of the FRP-wrapped UHPC columns by comparing experimental results. The reliability of four selected confinement models and three design codes such as ACI-440, CSA-S806-02, and ISIS CANADA is also evaluated in terms of agreement with the experimental results. Totally 6 unconfined and 36 different types of the FRP-wrapped UHPC columns are tested under monotonic axial compression. The values of ultimate strengths of FRP-wrapped UHPC columns obtained from the experimental results are compared and verified with finite element (FE) analysis results and the design codes mentioned above. The concrete damage plasticity model (CDPM) in Abaqus is utilized to represent the confined behavior of the UHPC. The results indicate that agreement between the test results and the non-linear FE analysis results is highly satisfactory. The CSA-S806-02 design code is considered more reliable than the ACI-440 and the ISIS CANADA design codes to calculate the ultimate strength of the FRP-wrapped UHPC columns. None of the selected confinement models that are developed for FRP-wrapped low and normal strength concrete columns can safely predict the ultimate strength of FRP-wrapped UHPC columns.

Experimental Study and Confinement Analysis on RC Stub Columns Strengthened with Circular CFST Under Axial Load

  • Liang, Hongjun;Lu, Yiyan;Hu, Jiyue;Xue, Jifeng
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1577-1588
    • /
    • 2018
  • As the excellent mechanical performance and easy construction of concrete filled steel tubes (CFST) composite structure, it has the potential to be used to strengthen RC pier columns. Therefore, tests were conducted on 2 reinforcement concrete (RC) stub columns and 9 RC columns strengthened with circular CFST under axial loading. The test results show that the circular CFST strengthening method is effective since the mean bearing capacity of the RC columns is increased at least 3.69 times and the ductility index is significantly improved more than 30%. One of the reasons for enhancement is obvious confinement provided by steel tube besides the additional bearing capacity supplied by the strengthening materials. From the analysis of the enhancement ratio, the strengthening structure has at least an extra 20% amplification except for taking full advantage of the strength of the strengthening material. Through the analysis of confining stress provided by steel tube and the stress-strain relationship of confined concrete, it is found that the strength of the core concrete can be increased by 21-33% and the ultimate strain can be enhanced to beyond $15,000{\mu}{\varepsilon}$.

Axial compressed UHPC plate-concrete filled steel tubular composite short columns, Part I: Bearing capacity

  • Jiangang Wei;Zhitao Xie;Wei Zhang;Yan Yang;Xia Luo;Baochun Chen
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.405-421
    • /
    • 2023
  • An experimental study on six axially-loaded composite short columns with different thicknesses of steel tube and that of the concrete plate was carried out. Compared to the mechanical behavior of component specimens under axially compressed, the failure modes, compression deformation, and strain process were obtained. The two main parameters that have a significant enhancement to cross-sectional strength were also analyzed. The failure of an axially loaded UHPC-CFST short column is due to the crushing of the UHPC plate, while the CFST member does reach its maximum resistance. A reduction coefficient K'c, related to the confinement coefficient, is introduced to account for the contribution of CFST members to the ultimate load-carrying capacity of the UHPC-CFST composite short columns. Based on the regression analysis of the relationship between the confinement index ξ and the value of fcc/fc, a unified formula for estimating the axial compressive strength of CFST short columns was proposed, combined with the experimental results in this research, and an equation for reliably predicting the strength of UHPC-CFST composite short columns under axial compression were also proposed.

Predicting strength and strain of circular concrete cross-sections confined with FRP under axial compression by utilizing artificial neural networks

  • Yaman S. S. Al-Kamaki;Abdulhameed A. Yaseen;Mezgeen S. Ahmed;Razaq Ferhadi;Mand K. Askar
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.93-122
    • /
    • 2024
  • One well-known reason for using Fiber Reinforced Polymer (FRP) composites is to improve concrete strength and strain capacity via external confinement. Hence, various studies have been undertaken to offer a good illustration of the response of FRP-wrapped concrete for practical design intents. However, in such studies, the strength and strain of the confined concrete were predicted using regression analysis based on a limited number of test data. This study presents an approach based on artificial neural networks (ANNs) to develop models to predict the strength and strain at maximum stress enhancement of circular concrete cross-sections confined with different FRP types (Carbone, Glass, Aramid). To achieve this goal, a large test database comprising 493 axial compression experiments on FRP-confined concrete samples was compiled based on an extensive review of the published literature and used to validate the predicted artificial intelligence techniques. The ANN approach is currently thought to be the preferred learning technique because of its strong prediction effectiveness, interpretability, adaptability, and generalization. The accuracy of the developed ANN model for predicting the behavior of FRP-confined concrete is commensurate with the experimental database compiled from published literature. Statistical measures values, which indicate a better fit, were observed in all of the ANN models. Therefore, compared to existing models, it should be highlighted that the newly developed models based on FRP type are remarkably accurate.

Study for the Structural walls with Interlocking Spirals on the boundary (단부에 Interlocking Spiral을 가진 전단벽의 거동에 관한 연구)

  • 홍성걸;김록배;정하선;구광현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.865-870
    • /
    • 2001
  • This paper propose a new seismic detail for ductility enhancement by interlocking spiral reinforcement in the potential yield regions of a wall. Through the theoretical consideration and experiment program, confinement with interlocking spirals lead the structural walls to ductile behavior. All specimens show stable hysteretic behavior and good energy dissipation capacity. Also the increase of shear strength mainly induces a flexural failure mode. As interlocking spiral are used in lapped splice region, they increase the bond strength and prevent a early tensile failure caused by the loss of bond stresses. Consequently, the confinement with interlocking spirals may result in a lower value of force reductions factor, newly proposed detail will be provide more economical design.

  • PDF