• Title/Summary/Keyword: Concrete Tie

Search Result 305, Processing Time 0.023 seconds

Direct Inelastic Design of Reinforced Concrete Members Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 철근콘크리트 부재의 직접 비탄성 설계)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.345-356
    • /
    • 2008
  • In the previous study, direct inelastic strut-and-tie model (DISTM) was developed to perform inelastic design of reinforced concrete members by using linear analysis for their secant stiffness. In the present study, for convenience in design practice, the DISTM was further simplified so that inelastic design of reinforced concrete members can be performed by a run of linear analysis, without using iterative calculations. In the simplified direct inelastic strut-and-tie model (S-DISTM), a reinforced concrete member is idealized with compression strut of concrete and tension tie of reinforcing bars. For the strut and tie elements, elastic stiffness or secant stiffness is used according to the design strategy intended by engineer. To define the failure criteria of the strut and tie elements, concrete crushing and reinforcing bar fracture were considered. The proposed method was applied to inelastic design of various reinforced concrete members including deep beam, coupling beam, and shear wall. The design results were compared with the properties and the deformation capacities of the test specimens.

Evaluation of Shear Strength of RC Beams using Strut-and-Tie Model (스트럿-타이 모델을 이용한 세장한 철근콘크리트 부재의 강도평가)

  • Park, Hong-Gun;Eom, Tae-Sung;Park, Chong-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.271-274
    • /
    • 2005
  • Existing strut-and-tie model cannot be applied to analysis of slender beams without shear reinforcement because shear transfer mechanism is not formed. In the present study, a new strut-and-tie model with rigid joint was developed. Basically, concrete strut is modeled as a frame element which can transfer shear force (or moment) as well as axial force. Employing Rankine failure criterion, failure strength due to shear-tension and shear-compression developed in compressive concrete strut was defined. For verification, various test specimens were analyzed and the results were compared with tests. The proposed strut-and-tie model predicted shear strength and failure displacement with reasonable precision, addressing the design parameters such as shear reinforcement, concrete compressive strength, and shear span ratio.

  • PDF

Strength Evaluation of Reinforced Concrete Corbels using Nonlinear Strut-Tie Model Approach (비선형 스트럿-타이 모델 방법에 의한 철근콘크리트 코벨의 강도 평가)

  • 윤영묵;신용목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.391-396
    • /
    • 2003
  • The concrete corbels consist of various failure mechanisms such as the yielding of the tension reinforcement, the crushing or splitting from compression concrete struts, and localized bearing or shearing failure under the loading plate. However, predicting those failure mechanisms is very difficult. In this study, the ACI 318-02, the softened strut-tie model approach, and the nonlinear strut-tie model approach are applied to ultimate strength analysis of normal strength concrete corbels tested to failure. From the result of the analysis, an effective analysis and design method of normal strength concrete corbels is suggested.

  • PDF

Evaluation of Ultimate Strength of Reinforced Concrete Deep Beams Using Grid Strut-Tie Model Approach (격자 스트럿-타이 모델 방법을 이용한 철근콘크리트 깊은 보의 극한강도 평가)

  • Kim, Byung-Hun;Lee, Won-Seok;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.179-182
    • /
    • 2005
  • Recently, many design codes including ACI 318-02 recommend the use of a strut-tie model approach for design of structural concrete with D-region(s). However, there are several unclear problems and shortcomings in the codes' strut-tie model approach. A grid strut-tie model approach was proposed to resolve these problems. In this study, the ultimate strengths of 17 deep beams, the most familiar type of D-regions, were evaluated for the validity check of the grid strut-tie model approach. The analytical results obtained by the approach are compared with those by the strut-tie model approach presented by CEB-FIP, AASHTO LRFD, and ACI 318-02.

  • PDF

Design of Diaphragm of Prestressed Concrete Box Bridge by Strut-Tie Model (스트럿-타이 모델에 의한 프리스트레스트 콘크리트 박스교 격벽부의 상세 설계)

  • 선민호;김영훈;송하원;변근주
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.39-46
    • /
    • 1998
  • This paper is about design for diaphragm of prestressed concrete box bridge using strut-tie model. In this paper, equivalent loads for the diaphragm are computed by considering loading conditions on continuous prestressed concrete box bridge and analyses for both longitudinal section and transverse section of the diaphragm an done by considering the equivalent loading and the prestressing. Based on principal stress trajectory obtained from the analyses, strut-tie model for each sections are constructed. By analyzing the constructed strut-tie model for each sections, the amounts and the locations of reinforcement for the diaphragm are obtained. The application of strut-tie model in this paper shows that the design by soul-tie model for the diaphragm of prestressed concrete box bridges can be rationally performed.

  • PDF

Linear and Nonlinear Strut-Tie Model Approaches for Analysis and Design of Structural Concrete (콘크리트 부재의 해석/설계를 위한 선형 및 비선형 스트럿-타이 모델 방법)

  • 윤영묵;김병헌
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.375-379
    • /
    • 2003
  • In this paper, the linear and nonlinear strut-tie model approaches for the analysis and design of concrete structures are suggested. The validity of the approaches are examined through the strength analysis of four dapped-end beams tested to failure. According to the analysis results, the nonlinear strut-tie model approach which takes the various characteristics of nonlinear behaviors into account in the analysis and design of structural concrete and predicts the strength of structural concrete proven to be an effective method for structural analysis and design.

  • PDF

Nonlinear finite element model of the beam-to-column connection for precast concrete frames with high ratio of the continuity tie bars

  • Sergio A. Coelho;Sergio A. Coelho
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.53-69
    • /
    • 2023
  • The rotational stiffness of a semi-rigid beam-to-column connection plays an important role in the reduction of the second-order effects in the precast concrete skeletal frames. The aim of this study is to present a detailed nonlinear finite element study to reproduce the experimental response of a semi-rigid precast beam-to-column connection composed by corbel, dowel bar and continuity tie bars available in the literature. A parametric study was carried using four arrangements of the reinforcing tie bars in the connection, including high ratio of the continuity tie bars passing around the column in the cast-in-place concrete. The results from the parametric study were compared to analytical equations proposed to evaluate the secant rotational stiffness of beam-to-column connections. The good agreement with the experimental results was obtained, demonstrating that the finite element model can accurately predict the structural behaviour of the beam-to-column connection despite its complex geometric configuration. The secant rotational stiffness of the connection was good evaluated by the analytical model available in the literature for ratio of the continuity tie bars of up to 0.69%. Precast beam-to-column connection with a ratio of the continuity tie bars higher than 1.4% had the secant stiffness overestimated. Therefore, an adjustment coefficient for the effective depth of the crack at the end of the beam was proposed for the analytical model, which is a function of the ratio of the continuity tie bars.

An Experimental Study on the Effect of Tie-wire on R/C Beam Behaviors (결속선이 R/C보의 거동에 미치는 영향에 대한 실험적 연구)

  • 변항룡;공귀옥;김준성;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.737-742
    • /
    • 1997
  • In this paper the effect of tie wire in lap spliced bars is investigated by experiment. The variables considered in the beam behaviors are beam dimension, lapped splice length and numbers of tie wire. 3 test pieces having the same variables consist one series and a total of 6 series ar tested. The test results show the beam behavior is not affected by numbers of tie wire but by the manner of tie. It was revealed hat the load bearing capacity of the beam is increased when the tie wire is extended to top bar.

  • PDF

Indeterminate Strut-Tie Model for Rational Design of Continuous RC Deep Beams (연속지지 RC 깊은 보의 합리적인 설계를 위한부정정 스트럿-타이 모델의 제안)

  • Chae, Hyun-Soo;Kim, Byung-Hun;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.265-268
    • /
    • 2006
  • Recently, many design standards recommend the use of a strut-tie model approach for design of structural concrete with D-region(s). However, since the design standards of the conventional strut-tie model approaches are suggested on the assumption of using a determinate strut-tie model, it is difficult to apply an indeterminate strut-tie model in the design of continuous deep beams. In this study, an indeterminate strut-tie model for continuous deep beams is proposed to resolve the problem, and the ultimate strengths of 35 continuous deep beams tested to failure are evaluated for the validity check of the proposed indeterminate strut-tie model. The analytical results by the proposed model are compared with those by the conventional approaches of ACI 318-99 and ACI 318-05.

  • PDF

Ultimate Strength Analysis of Reinforced Concrete Corbels Using Grid Softened Strut-Tie Model (격자 연화 스트럿-타이 모델 방법을 이용한 RC 코벨의 극한강도예측)

  • Yun Young Mook;Kim Byung Hun;Lee Won Seok;Shin Hyo Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.544-547
    • /
    • 2004
  • Predicting the failure modes of reinforced concrete corbels is difficult because the reinforced concrete corbels show the shapes of sudden shear failures at even slight deflection. For this reason, an exact analysis method is demanded highly. In this study, the validity of the grid softened strut-tie model method suggested for concrete member analysis was examined through the ultimate strength evaluation of the reinforced concrete corbels tested to failure. The evaluated ultimate strengths by the grid softened strut-tie model method were compared with those by the ACI 318-02 and the softened strut-tie model method.

  • PDF