• Title/Summary/Keyword: Concrete Tie

Search Result 305, Processing Time 0.027 seconds

Strut-Tie Models and Load Distribution Ratios for Reinforced Concrete Beams with Shear Span-to-Effective Depth Ratio of Less than 3 (I) Models and Load Distribution Ratios (전단경간비가 3 이하인 철근콘크리트 보의 스트럿-타이 모델 및 하중분배율(I) 모델 및 하중분배율)

  • Chae, Hyun-Soo;Yun, Young Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.257-265
    • /
    • 2016
  • The failure behavior of reinforced concrete beams is governed by the mechanical relationships between the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, two simple indeterminate strut-tie models which can reflect all characteristics of the failure behavior of reinforced concrete beams were proposed. The proposed models are effective for the beams with shear span-to-effective depth ratio of less than 3. For each model, a load distribution ratio, defined as the fraction of load transferred by a truss mechanism, is also proposed to help structural designers perform the rational design of the beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratios, the effect of the primary design variables including shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete was reflected through numerous material nonlinear analysis of the proposed indeterminate strut-tie models. In the companion paper, the validity of the proposed models and load distribution ratios was examined by applying them to the evaluation of the failure strength of 335 reinforced concrete beams tested to failure by others.

Influence of Concrete Strength and Lateral Ties on Behavior of High-Strength Concrete Columns Subjected to Eccentric Compressive Load (편심 압축력을 받는 고강도 콘크리트 기둥의 거동에 미치는 띠철근 및 콘크리트 강도의 영향)

  • Lee, Young Ho;Chung, Heon Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.95-104
    • /
    • 2007
  • This study was focused on the effect of concrete strength and lateral ties of concrete columns subjected to eccentric compressive loads. The twenty-four concrete columns with $200mm{\times}200mm$ square cross-section were tested. The main variables were concrete strength, spacing and configuration of lateral ties, and eccentricity ratios. From the experiment, the followings were investigated ; 1) In all cases, it was observed that the increase of concrete compressive strength led to the decrease of ductility. Also, as the eccentricity ratios increased, the effect of ductility enhancement by lateral ties decreased. 2) As the ties spacing decreased from 100mm to 30mm, the magnitude of axial load acting on the concrete column showed an enhancement of 1.1~1.2 times and the descending curve after a peak moment presented a smooth decline. 3) The high-strength concrete columns required a design of lateral ties to increase the volumetric ratios and density of tie spacing to sustain a proper strength and ductility. Accordingly, regardless of concrete strength, the current AIK design code to specify the maximum tie spacing of concrete columns was proven to lead to the poor strength and ductility for seismic design. Therefore, it is necessary to develop a new seismic design code that connects volumetric ratios and tie spacing of concrete columns with concrete strength.

Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading

  • Long, Xu;Lee, Chi King
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.807-831
    • /
    • 2015
  • In the previous analytical studies on 2D reinforced concrete (RC) beam-column joints, the modified compression field theory (MCFT) and the strut-and-tie method (STM) are usually employed. In this paper, the limitations of these analytical models for RC joint applications are reviewed. Essentially for predictions of RC joint shear behaviour, the MCFT is not applicable, while the STM can only predict the ultimate shear strength. To eliminate these limitations, an improved STM is derived and applied to some commonly encountered 2D joints, viz., interior and exterior joints, subjected to monotonic loading. Compared with the other STMs, the most attracting novelty of the proposed improved STM is that all critical stages of the shear stress-strain relationships for RC joints can be predicted, which cover the stages characterized by concrete cracking, transverse reinforcement yielding and concrete strut crushing. For validation and demonstration of superiority, the shear stress-strain relationships of interior and exterior RC beam-column joints from published experimental studies are employed and compared with the predictions by the proposed improved STM and other widely-used analytical models, such as the MCFT and STM.

Tests of reinforced concrete deep beams

  • Lu, Wen-Yao;Hsiao, Hsin-Tai;Chen, Chun-Liang;Huang, Shu-Min;Lin, Ming-Che
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.357-372
    • /
    • 2015
  • This study reports the test results of twelve reinforced concrete deep beams. The deep beams were tested with loads applied through and supported by columns. The main variables studied were the shear span-to-depth ratios, and the horizontal and vertical stirrups. The shear strengths can be effectively enhanced for deep beams reinforced with both horizontal and vertical stirrups. The test results indicate the shear strengths of deep beams increase with the decrease of the shear span-to-depth ratios. The normalized shear strengths of the deep beams did not increase proportionally with an increase in effective depth. An analytical method for predicting the shear strengths of deep beams is proposed in this study. The shear strengths predicted by the proposed method and the strut-and-tie model of the ACI Code are compared with available test results. The comparison shows the proposed method can predict the shear strengths of reinforced concrete deep beams more accurately than the strut-and-tie model of the ACI Code.

Behavior of the Wall System with Transfer Girder and Columns. (상부 전단벽 하부 프레임 구조를 갖는 시스템의 수직하중에 대한 거동)

  • 홍성걸;문종우;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.456-461
    • /
    • 1998
  • This paper presents the results from a combination of strut-and-tie model and analytical study that investigated the ultimate strength of wall system with frame supports. Strut-and-tie models show reasonable force flows and upper bound solution is compared to the results from FEM analysis. The results shows that two main parameters - transfer girder depth and column width - yield good estimation of the ultimate strength of the system. Vertical and horizontal reinforcements of the transfer girder add few strength to the whole system. The proposed design strength formula shows good agreement with the results from FEM analysis.

  • PDF

Bond-Slip Tests of V-ties as a Supplementary Lateral Reinforcement (보조 띠철근으로써 V-타이의 부착-미끄러짐 관계 실험)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.157-158
    • /
    • 2017
  • This tests examined bond stress-slip relationship of V-ties embedded into concrete as a supplementary lateral reinforcement proposed for ductility of concrete flexural members. The different leg shapes of V-ties were prepared as a test parameter. The V-tie with pressed end-legs exhibited 28% higher bond strength than the conventional V-ties, whereas bond stress-slip curves were insignificantly affected by the embedment length of V-ties.

  • PDF