• Title/Summary/Keyword: Concrete Tie

Search Result 304, Processing Time 0.022 seconds

Strut-Tie Model Design Approaches of Structural Concrete (스트럿-타이 모델에 의한 콘크리트 부재 설계방법의 고찰)

  • 윤영묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.821-826
    • /
    • 2001
  • This paper presents four types of strut-tie model design approaches of structural concrete through the anchorage zone design of a post-tensioned concrete I-beam. The differences and distinctive feature of each approach in terms of structural type of selected strut-tie model, external force acting on strut-tie model, effective strength of concrete strut, and strut-tie model design procedure are analyzed and compared. The outcomes of present study enable structural designers to understand the merits and demerits of each strut-tie model design approach, and thus to conduct reasonable and accurate design of structural concrete.

  • PDF

Strut-tie model evaluation of behavior and strength of pre-tensioned concrete deep beams

  • Yun, Young Mook
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.267-291
    • /
    • 2005
  • To date, many studies have been conducted for the analysis and design of reinforced concrete members with disturbed regions. However, prestressed concrete deep beams have not been the subject of many investigations. This paper presents an evaluation of the behavior and strength of three pre-tensioned concrete deep beams failed by shear and bond slip of prestressing strands using a nonlinear strut-tie model approach. In this approach, effective prestressing forces represented by equivalent external loads are gradually introduced along strand's transfer length in the nearest strut-tie model joints, the friction at the interface of main diagonal shear cracks is modeled by the aggregate interlock struts along the direction of the cracks in strut-tie model, and an algorithm considering the effect of bond slip of prestressing strands in the strut-tie model analysis and design of pre-tensioned concrete members is implemented. Through the strut-tie model analysis of pre-tensioned concrete deep beams, the nonlinear strut-tie model approach proved to present effective solutions for predicting the essential aspects of the behavior and strength of pre-tensioned concrete deep beams. The nonlinear strut-tie model approach is capable of predicting the strength and failure modes of pre-tensioned concrete deep beams including the anchorage failure of prestressing strands and, accordingly, can be employed in the practical and precise design of pre-tensioned concrete deep beams.

Validity Evaluation of Determination Methods of Effective Concrete Strut Strength (콘크리트 스트럿 유효강도 결정방법의 적합성 평가)

  • 윤영묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.595-599
    • /
    • 2003
  • For implementation of the strut-tie model approach to the practical analysis and design of structural concrete, the effective strengths of concrete struts in a strut-tie model, which have a crucial effect on the determination of strut and tie forces and the validity verification of strut-tie model's geometric compatibility condition, have to be determined accurately. In this study, the validity of the methods for determining the effective strengths of concrete struts was evaluated by conducting the strut-tie model analyses of the three reinforced concrete deep beams tested to failure with the effective strengths of concrete struts obtained from the suggested determination methods.

  • PDF

Effect of Effective Compressive Strength of Concrete Strut on Structural Concrete Design (콘크리트 스트럿의 유효강도가 콘크리트 부재의 설계에 미치는 영향)

  • 윤영묵;석철호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.241-246
    • /
    • 2000
  • In the strut-tie model design of structural concrete, the importance of the effective strength of concrete strut has been overlooked by many practitioners. The authors believe that the effective strength of concrete strut is an important factor not only in determining steel tie forces but also in verifying the nodal zone strength and geometric compatibility condition of a selected strut-tie model. This study evaluate the effect of the effective strength of concrete strut on structural concrete design by applying the different effective strut strengths to the strut-tie model design of a post-tensioned anchorage zone and a continuous concrete deep beam.

  • PDF

Confinement Effects of Reinforced Concrete Tied Columns (철근콘크리트 띠철근 기둥의 구속효과)

  • 왕성근;한범석;이희수;신성우;반병열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-34
    • /
    • 2001
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$120mm) were fabricated to simulate similarly an actual structural members size. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were studied in this research program.

  • PDF

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

Analysis and Design of Concrete Structures with Strut-Tie Model Approach (스트럿-타이 모델 방법에 의한 콘크리트 구조물의 해석 및 설계)

  • 윤영묵;박문호;박승진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.251-256
    • /
    • 1995
  • This paper presents an evaluation of the strength and behavior of a tested simply supported rectangular reinforced eoncrete beam and a design example of a shear wall using two-dimensional strut-tie model with finite element nonlinear analysis. Strut-tie models reflecting the actual support and loading conditions are developed for the beam and shear wall. The strut-tie model not only provides simple solutions for large number of design situations dealing with the entire range of concrete structures which appear to be rather complicated but also predicts the behavior and strength of concrete members.

  • PDF

Uniaxial Compression Behavior of High-Strength Concrete Confined by Low-Volumetric Ratio Lateral Ties

  • Hong Ki-Nam;Han Sang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.843-852
    • /
    • 2005
  • Presently, test results and stress-strain models for poorly confined high-strength columns, more specifically for columns with a tie volumetric ratio smaller than $2.0\%$, are scarce. This paper presents test results loaded in axial direction for square reinforced concrete columns confined by various volumetric ratio lateral ties including low-volumetric ratio. Test variables include concrete compressive strength, tie yield strength, tie arrangement type, and tie volumetric ratio. Local strains measured using strain gages bonded to an acryl rod. For square RC columns confined by lateral ties, the confinement effect was efficiently improved by changing tie arrangement type from Type-A to Type-B. A method to compute the stress in lateral ties at the concrete peak strength and a new stress-strain model for the confined concrete are proposed. Over a wide range of confinement parameters, the model shows good agreement with stress-strain relationships established experimentally.

Nonlinear Strut-Tie Model Approach in Pre-tensioned Concrete Deep Beams (높이가 큰 프리텐션 콘크리트 보에서의 비선형 스트럿-타이 모델 방법)

  • 윤영묵;이원석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.847-852
    • /
    • 2000
  • This paper presents an evaluation of the behavior and strength of two pre-tensioned concrete deep beams tested to failure with using the nonlinear strut-tie model approach. In the approach, the effective prestressing forces represented be equivalent external loads are gradually introduced along its transfer length in the nearest strut-tie model joints, the friction at the interface of main diagonal shear cracks is modeled by diagonal struts along the direction of the cracks in strut tie-model, and additional positioning of concrete ties a the place of steel ties is incorporated. Through the analysis of pre-tensioned concrete deep beams, the nonlinear strut-tie model approach proved to present effective solutions for prediction the essential aspects of the behavior and strength of pre-tensioned concrete deep beams.

  • PDF

Design of Anchorage Zone in Prestressed Concrete Structure Using Nonlinear Strut and Tie Model (비선형 스트럿-타이 모델에 의한 PC 구조물의 정착부 설계)

  • 배한옥;변근주;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.392-397
    • /
    • 1997
  • In this paper, design and analysis of anchorage zone in prestressed concrete structure using nonlinear strut and tie model is presented. Nonlinear strut and tie model is an analysis and design model which constructs strut and tie model based on nonlinear analysis considering the nonlinear behavior of concrete. Based on the nonlinear strut and tie model, the analysis and design are performed for the anchorage zone having singular concentric tendons, singular eccentric tendons and multiple tendons, respectively. For verification of the model, comparisons are made with experimental results as well as results by linear strut and tie models. from the comparisons, it is shown that the design of the anchorage zone by the nonlinear model is still economical without loosing the degree of safety and the prediction of the ultimate load by the nonlinear model gives better accuracy than by the linear one.

  • PDF