• Title/Summary/Keyword: Concrete Railway Bridge

Search Result 210, Processing Time 0.029 seconds

Nonlinear Analysis with contact element between old and new concrete (Contact 요소를 이용한 신.구 콘크리트의 비선형 해석)

  • Cho, Sun-Kyu;Lee, John-Sun;Jeong, Woo-Cheol;Lee, John-Shin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1050-1055
    • /
    • 2007
  • In the case of a rail road bridge extension work, especially single track to double track, the foundation of new substructure which supports the extended part of superstructure could be interfered by the exist foundation of an old bridge. When these two foundations are jointed to prevent such fatal effects of the structure as unequal subsidence of soil foundations, it is important to prove the structural behaviour of the joining surfaces between new foundation and old foundation. 3-Dimensional Finite Element Analysis Method have been studied for the solutions of the structural behaviour of the foundations. In this analysis, 'Contact Element' which allows the sliding of each adjoining member is used for the joint of the boundary surface of the old and new pier foundations. Furthermore, Material Nonlinear Behaviour Analysis also supports the accuracy of the result in this study because the foundations consist of concrete main bodies and reinforced steel bars. These detailed analyses secure the verification of the structural safety of the foundations in the extension work more firmly.

  • PDF

Analysis of Dynamic Response and Vibration Mitigation for Steel Box Girder Railway Bridges (강박스거더 철도교량의 동적거동 및 진동저감 방안 분석)

  • Hwang, Eui Seung;Kim, Do Young;Jang, Seong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.487-495
    • /
    • 2017
  • Recently rapid-transit railway systems have been constructed in many developing countries due to its advantages in congestions and environmental problems. Railway bridges show many different aspects compared to road bridges and passenger comfort and traffic safety are one of them. In particular, deflection and acceleration due to repeated vibration characteristics have a structural weakness that can cause undesirable response. Especially steel railway bridges have been known to have weaknesses due to its relatively light weights compared to concrete bridges. The purpose of this study is to analyze the dynamic response of steel box girder bridges due to passing trains then propose the appropriate method to mitigate the level of vibration in terms of accelerations. Three steel railway bridges are tested and the numerical model to analyze the dynamic response of the bridge by passing train are developed. For the verification of the model, the natural frequency extracted using the acceleration data measured in the bridge is compared with the natural frequency of the numerical model. To mitigate the acceleration level of the bridge, parametric studies are performed to find the effectiveness of the method. Based on the analysis, the appropriate method is proposed for decreasing the acceleration of the bridge for passenger comfort and traffic safety.

A comprehensively overall track-bridge interaction study on multi-span simply supported beam bridges with longitudinal continuous ballastless slab track

  • Su, Miao;Yang, Yiyun;Pan, Rensheng
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Track-bridge interaction has become an essential part in the design of bridges and rails in terms of modern railways. As a unique ballastless slab track, the longitudinal continuous slab track (LCST) or referred to as the China railway track system Type-II (CRTS II) slab track, demonstrates a complex force mechanism. Therefore, a comprehensive track-bridge interaction study between multi-span simply supported beam bridges and the LCST is presented in this work. In specific, we have developed an integrated finite element model to investigate the overall interaction effects of the LCST-bridge system subjected to the actions of temperature changes, traffic loads, and braking forces. In that place, the deformation patterns of the track and bridge, and the distributions of longitudinal forces and the interfacial shear stress are studied. Our results show that the additional rail stress has been reduced under various loads and the rail's deformation has become much smoother after the transition of the two continuous structural layers of the LCST. However, the influence of the temperature difference of bridges is significant and cannot be ignored as this action can bend the bridge like the traffic load. The uniform temperature change causes the tensile stress of the concrete track structure and further induce cracks in them. Additionally, the influences of the friction coefficient of the sliding layer and the interfacial bond characteristics on the LCST's performance are discussed. The systematic study presented in this work may have some potential impacts on the understanding of the overall mechanical behavior of the LCST-bridge system.

Seismic Performance of Prefabricated Composite Column for Accelerated Bridge Construction (급속시공을 위한 조립식 합성교각의 내진성능 평가)

  • Lee, Jung-Woo;Chin, Won-Jong;Joh, Chang-Bin;Kwark, Jong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.425-430
    • /
    • 2010
  • This paper investigates the seismic behavior of a prefabricated composite column which is made by onsite connection of precast composite column segments to accelerate bridge construction. Quasi-static cyclic loading tests were performed on three prefabricated composite columns with different connection details to find their seismic capacity. Test results show that the onsite connections remains in elastic range and no slip is observed as designed in spite of plastic hinge formation at the column. The test results also indicate that the prefabricated composite column has better overall seismic capacity compared to a conventional reinforced concrete column with seismic details.

Dynamic Performance Estimation of the Incrementally PSC Girder Railway Bridge by Modal Tests and Moving Load Analysis (다단계 긴장 PSC 거더 철도교량의 동특성 실험 및 주행열차하중 해석에 의한 동적성능 평가)

  • Kim, Sung Il;Kim, Nam Sik;Lee, Hee Up
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.707-717
    • /
    • 2006
  • As an alternative to conventional prestressed concrete (PSC) girders, various types of PSC girders are either under development or have already been applied in bridge structures. Incrementally prestressed concrete girder is one of these newly developed girders. According to the design concept, these new types of PSC girders have the advantages of requiring less self-weight while having the capability of longer spans. However, the dynamic interaction between bridge superstructures and passing trains is one of the critical issues concerning these railway bridges designed with more flexibility. Therefore, it is very important to evaluate modal parameters of newly designed bridges before doing dynamic analyses. In the present paper, a 25 meters long full scale PSC girder was fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios at every prestressing stage. During the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied, in order to obtain precise frequency response functions and the modal parameters are evaluated varying with construction stages. Prestressed force effects on changes of modal parameters are analyzed at every incremental prestressing stage. With the application of reliable properties from modal experiments, estimation of dynamic performances of PSC girder railway bridges can be obtained from various parametric studies on dynamic behavior under the passage of moving train. Dynamic displacements, impact factor, acceleration of the slab, end rotation of the girder, and other important dynamic performance parameters are checked with various speeds of the train.

Numerical Analysis for Dynamic Characteristics of Next-Generation High-Speed Railway Bridge (차세대 고속철 통과 교량의 동적특성에 대한 수치해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Yi, Seong-Tae;Jeong, Byeong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • To take into account of the increasing speed of next generation high-speed trains, a new design code for the traffic safety of railway bridges is required. To solve dynamic responses of the bridge, this research offers a numerical analyses of PSC (Pre-stressed Concrete) box girder bridge, which is most representative of all the bridges on Gyungbu high-speed train line. This model takes into account of the inertial mass forces by the 38-degree-of-freedom and interaction forces as well as track irregularities. Our numerical analyses analyze the maximum vertical deflection and DAF (Dynamic Amplification Factor) between simple span and two-span continuous bridges to show the dynamic stability of the bridge. The third-order polynomial regression equations we use predict the maximum vertical deflections depending on varying running speeds of the train. We also compare the vertical deflections at several cross-sectional positions to check the influence of running speeds and the maximum irregularity at a longitudinal level. Moreover, our model analyzes the influence lines of vertical deflection accelerations of the bridge to evaluate traffic safety.

Vibration of Steel Composite Railway Bridges under High Speed Train (고속열차하중 하의 강합성형 철도교의 진동)

  • Chang, Sung Pil;Kwark, Jong Won;Ha, Sang Gil;Kim, Sung Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.577-587
    • /
    • 1998
  • The influences of high speed train on the dynamic responses of steel composite railway bridges are investigated. The bridge system which has two I-girder and several cross beams is modeled with plate and frame elements. With assumption of concrete slabs are fully connected with steel girders, the offset between slabs and girders is modeled using constraint equation. The track system is modeled using beams on elastic foundation theory. And, the TGV train model is developed in 2-dimension considering bouncing and pitching motion. And braking action of vehicle is considered using speed dependent braking function. To investigate the behavior of bridges due to moving trains, parametric studies on the variation of natural frequency of bridge, speed parameter, vehicle modeling method, braking action of train, etc are performed.

  • PDF

Assessment of masonry arch bridges retrofitted by sprayed concrete under in-plane cyclic loading

  • Mahdi Yazdani;Mehrdad Zirakbash
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2024
  • Masonry arch bridges as a vital infrastructure were not designed for seismic loads. Given that masonry arch bridges are made up of various components, their contribution under the seismic actions can be very undetermined and each of these structural components can play a different role in energy dissipation. Iran is known as a high-risk area in terms of seismic excitations and according to the seismic hazard zoning classification of Iran, most of these railway infrastructures are placed in the high and very high seismicity zones or constructed near the major faults. Besides, these ageing structures are deteriorated and thus in recent years, some of these bridges using various retrofitting approaches, including sprayed concrete technique are strengthened. Therefore, investigating the behavior of these restored structures with new characteristics is very significant. The aim of this study is to investigate the cyclic in-plane performance of masonry arch bridges retrofitted by sprayed concrete technique through the finite element simulation. So, by considering the fill-arch interaction, the nonlinear behavior of a bridge has been investigated. Finally, by extracting the hysteresis and enveloping curves of the retrofitted and non-retrofitted bridge, the effect of strengthening on energy absorption and degradation of material has been investigated.

Design and Constructability Improvement of 3D Concrete Formworks through Analysis of Construction Applications (3차원 콘크리트 거푸집의 설계 및 시공성 개선)

  • Park, Seong-Jun;Dong, Ngoc Son;Kang, Hwirang;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Aesthetic design guidelines of bridges were developed in many countries. As iconic structures, bridges need to be attractive and durable as they serve many generations. In this paper, a new design process of concrete structures considering 3D shapes and texture was proposed. The 3D design needs to consider function, economy, advanced technology, tradition and local culture. 3D printers enable the combination of artistic design and engineering design for concrete structures. Parametric modeling with iconic design was utilized to produce 3D formworks. As a pilot project, a railway bridge girder was designed and the proposed technologies were applied. Detail requirements to improve constructability and quality of concrete surfaces were derived. From the pilot applications, design guidelines were suggested.

Dynamic Characteristics of High-speed Railway Steel Bridges (고속철도 강교량의 진동특성 분석)

  • Lee, Jung-Whee;Kim, Sung-Il;Kwark, Jong-Won;Lee, Pil-Goo;Yoon, Tae-Yang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.632-637
    • /
    • 2007
  • The dynamic behavior of two steel bridges crossed by the Korean High Speed Train(KHST) has been investigated experimentally and the results are compared with the specification requirement of BRDM and other typical PSC Box bridge's responses. The investigated bridges are a 2-girder steel bridge of 1@40m span length(E-Won Bridge), 2@50m span length (Ji-Tan Bridge), and a PSC Box girder bridge of 2@40m span length (Yeon-Jae Bridge). A set of experimental tests were performed during operation of KHST, and a number of accelerometers, LVDTs and ring-type displacement transducers were utilized for measurement of three kinds of dynamic responses (acceleration, deflection, and end-rotation angle). Measured responses show that the vertical deflections and end-rotation angles of the three bridges are all satisfying the spec. requirement with large margin, but it was also found acceleration responses which are very close or exceed the limit value. Most of the excessive acceleration responses were found when the passing velocity of the KHST is close to the critical velocity ($V_{cr}$) which causes resonance. No noticeable differences of dynamic responses due to the different materials(steel or concrete) could be found within these experimental results.