• Title/Summary/Keyword: Concrete Pouring Noise

Search Result 5, Processing Time 0.198 seconds

Noise Management Process for Big Scale Concrete Pouring in Urban Area (도심지 대규모 콘크리트 타설시 소음관리 사례)

  • An, Jang-Ho;Lee, Joo-Ho;Lee, Jun-Seo;Kim, Il-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.787-790
    • /
    • 2012
  • In downtown, construction noise related claims are the most important issues. Sometimes noise related claims halt the construction process. Therefore, Introduction of noise reduction measures is common to construction process with a loud noise. This case is about concrete pouring for mat foundation of super tall building. Concrete pouring process using High Pressure Pumping machine causes high noise level in the vicinity of area. And large number of transit-mixer truck cause traffic congestion. This paper introduces effort and process to prevention of construction noise claims on massive scale concrete pouring.

  • PDF

Sound Pressure and Vibration Characteristics of Reinforced Concrete Slab with Heavy Weight Mortar for Cross-section Recovery (단면 회복용 중량 모르타르를 사용한 철근콘크리트 슬래브의 음압 및 진동 특성)

  • Jae-Sung Kim;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.298-305
    • /
    • 2024
  • This paper is a basic study to improve floor impact noise of reinforced concrete slabs. Considering the case where thickness differences occur due to construction, changes in sound insulation characteristics were analyzed when the cross section of a reinforced concrete slab was restored with mortar. The houses subject to analysis were divided into two types, 84 type and 59 type, with different floor plans. When pre-mortaring was done with heavy mortar to restore the cross section on the reinforced concrete slab, the case was when pre-mortaring was done with the reinforced concrete slab alone and with general mortar. Compared with, the difference between vibration acceleration level and sound pressure was measured. As a result of measuring the vibration acceleration level of the slab after pouring the mortar, the CS mortar was 66.4 dB and the ES mortar was 66.1 dB at 84 type 63 Hz, which was more than 2 dB lower than that of regular mortar. In addition, compared to the reinforced concrete slab alone, CS mortar was reduced by 5.5 dB and ES mortar was reduced by 4.6 dB, showing relatively excellent values. As for the floor impact sound pressure, the 84B type was similar at 63 Hz for CS mortar and general mortar at 67.3 dB, and the reduction compared to the reinforced concrete slab alone was 3.6 dB for CS mortar, 2.7 dB for ES mortar, and 2.7 dB for general mortar was reduced by 1.4 dB. By pouring mortar to compensate for the thickness of the reinforced concrete slab, the vibration acceleration level and floor impact noise were reduced, and when a heavy mortar using copper smelting slag fine aggregate was used, relatively excellent performance was found.

DEVELOPMENT OF CONCRETE FILLED TUBE AS A PILLAR PILE FOR TOP DOWN METHOD

  • Jee-Yun Song;Hong-Chul Rhim;Seung-Weon Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.808-813
    • /
    • 2009
  • Top-down method is widely used for urban area construction for its advantages in reducing environmental problems such as dust and noise, and saving construction cost depending on given conditions of a construction site. Because the excavation and construction of super- and sub-structures of the building have to be proceeded simultaneously, a column has to be embedded prior to excavation. This column is called a pillar column or pre-founded column. Usually a wide flange section is used for these columns. To place the columns, usually the diameter of casing holes needs to be larger than the section of the wide flange itself in order to accommodate a couple of tremie pipes for pouring concrete. In this paper, a newly developed method of using circular pipe as an alternative to the existing wide flange section is discussed. The crucial part of the new method is to develop a connection between the circular column and concrete flat slabs. For shear force transfer from concrete slab to the concrete filled tube (CFT) column, shear jackets with studs and shear bands are proposed. The studs are welded on the jackets at shop and placed around the circular column on site. The shear bands are welded on the outer side of the CFT at shop and inserted into ground with the CFT. Test results and application of the method to a construction site are also provided in this paper.

  • PDF

The Influences of Additives and Curing Temperature on the Expansion Pressure of Calcium Oxide Hydration (생석회의 팽창압 발현에 미치는 첨가제 및 양생온도의 영향)

  • Kim, Won-Ki;Soh, Jeong-Soeb;Kim, Hoon-Sang;Kim, Hong-Joo;Lee, Won-Jun;Shin, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.529-535
    • /
    • 2007
  • Calcium oxide has been used as a demolition agent in fracturing rocks and old concrete structures, etc. With the agent, demolition work can be done in safety without a noise, vibration and any other pollution, since high expansive pressure is obtained gradually by only mixing the agents with water and pouring the slurry into boreholes. But application of the non-explosive demolition agent is a time-consuming job, especially in winter. Essentially, this problem is related to the reaction rate of calcium oxide with water. This study examines the influence of additives such as cement and anhydrite on expansion pressure of calcium oxide at different curing temperatures. The expansion pressure of calcium oxide began to increase steadily with the rise of the curing temperature. When mixing calcium oxide alone with water, blown-out shot occurred. But as additives were added to calcium oxide, the reaction of calcium oxide delayed and the expansion pressure showed gradual increment. Especially, anhydrite showed a superior delaying effect than cement on the reaction of calcium oxide.

Heavy-impact sound insulation performance according to the changes of dry flooring structure in wall structure

  • Cho, Jongwoo;Lee, Hyun-Soo;Park, Moonseo;Lim, Hohwan;Kim, Jagon
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.89-98
    • /
    • 2017
  • The floor heating method generally uses a wet construction method including the installation of resilient material, lightweight foam concrete, heating piping, and finishing mortar. Such a wet construction method not only delays other internal finishing processes during curing period for two mortar pouring process, but also has a disadvantage that it is difficult to replace the floor heating layer when it deteriorated because it is integrated with the frame. Dry floor heating construction method can be a good alternative in that it can solve these defects. Conversely, when it applied to the wall structure that is vulnerable to the interlayer noise compared with the column-beam structure, the question about the heavy-impact sound(HIS) insulation performance is raised. Therefore, conventional dry floor heating method is hard to apply to the wall structure apartments. Therefore, for the purpose to improve the applicability of dry floor heating method in wall structure apartments, this study investigated the change of floor impact sound, especially HIS insulation performance which is one of the required performance for the floor structure. This study tried to examine whether the change of heavy-impact sound pressure level(SPL) shows a tendency at the significant level according to the shape and mass of the floor structure. Through filed experiments on wall structure apartment, this study confirmed that the form of the raised floor shows better HIS insulation performance than the fully-supported form. In addition, it was also confirmed that the HIS insulation performance increases with the mass on the upper part. Moreover, this study found the fact that a mass of about 30 kg/m2 or more should be placed on the upper structure to reduce the heavy-impact SPL according to the bang machine measuring method. Although this study has a limit due to insufficient experiment samples, if the accuracy of this study is increased, it will contribute to the diffusion of dry floor heating by setting the HIS insulation performance target and designing the dry floor heating structure that meets the target.

  • PDF