• Title/Summary/Keyword: Concrete Pile

Search Result 386, Processing Time 0.021 seconds

Analysis of Reinforcement Effect of Steel-Concrete Composite Group Piles by Numerical Analysis (수치해석을 이용한 강관합성 군말뚝의 보강효과 분석)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moon-Kyung;Lee, Ju-Hyung;Kwak, Ki-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1132-1139
    • /
    • 2010
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter, pile distance and loading direction. As the results, the axial capacity of the composite pile was about 73% larger than that of the steel pipe pile and about 14% larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 51% of that of the steel pile and about 19% of that of the concrete pile.

  • PDF

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 강관합성말뚝의 보강효과 분석)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moon-Kyung;Lee, Ju-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.404-411
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

  • PDF

Nonlinear responses of energy storage pile foundations with fiber reinforced concrete

  • Tulebekova, Saule;Zhang, Dichuan;Lee, Deuckhang;Kim, Jong R.;Barissov, Temirlan;Tsoy, Viktoriya
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.363-375
    • /
    • 2019
  • A renewable energy storage pile foundation system is being developed through a multi-disciplinary research project. This system intends to use reinforced concrete pile foundations configured with hollowed sections to store renewable energy generated from solar panels attached to building structures in the form of compressed air. However previous research indicates that the compressed air will generate considerable high circumferential tensile stresses in the concrete pile, which requires unrealistic high hoop reinforcement ratio to avoid leakage of the compressed air. One possible solution is to utilize fiber reinforced concrete instead of placing the hoop reinforcement to resist the tensile stress. This paper investigates nonlinear structural responses and post-cracking behavior of the fiber reinforced concrete pile subjected to high air pressure through nonlinear finite element simulations. Concrete damage plasticity models were used in the simulation. Several parameters were considered in the study including concrete grade, fiber content, and thickness of the pile section. The air pressures which the pile can resist at different crack depths along the pile section were identified. Design recommendations were provided for the energy storage pile foundation using the fiber reinforced concrete.

Flexural and shear behavior of large diameter PHC pile reinforced by rebar and infilled concrete

  • Bang, Jin-Wook;Lee, Bang-Yeon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.75-81
    • /
    • 2020
  • The purpose of this paper is to provide an experimental and analytical study on the reinforced large diameter pretensioned high strength concrete (R-LDPHC) pile. R-LDPHC pile was reinforced with infilled concrete, longitudinal, and transverse rebar to increase the flexural and shear strength of conventional large diameter PHC (LDPHC) pile without changing dimension of the pile. To evaluate the shear and flexural strength enhancement effects of R-LDPHC piles compared with conventional LDPHC pile, a two-point loading tests were conducted under simple supported conditions. Nonlinear analysis on the basis of the conventional layered sectional approach was also performed to evaluate effects of infilled concrete and longitudinal rebar on the flexural strength of conventional LDPHC pile. Moreover, ultimate strength design method was adopted to estimate the effect of transverse rebar and infilled concrete on the shear strength of a pile. The analytical results were compared with the results of the bending and shear test. Test results showed that the flexural strength and shear strength of R-LDPHC pile were increased by 2.3 times and 3.3 times compared to those of the conventional LDPHC pile, respectively. From the analytical study, it was found that the flexural strength and shear strength of R-LDPHC pile can be predicted by the analytical method by considering rebar and infilled concrete effects, and the average difference of flexural strength between experimental results and calculated result was 10.5% at the ultimate state.

A Study on the Mechanical Properties of HPC Pile Using Steel Fiber (강섬유를 혼입한 HPC Pile의 역학적 특성에 관한 연구)

  • 박승범;신동기;박병철;권혁준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.365-372
    • /
    • 1997
  • This study is aimed for manufacturing a High performance Concrete(HPC) Pile as using steel fibers, investigation the mechanical properties of HPC Pile and proposition the potential application. At this study. We found that mechanical properties(cracking moment and fracture moment) of Pretensioned spun High strength Concrete (PHC) Pile using steel fibers is much superior to without steel fibers. Therefore. we think that using steel fibers in Concrete Pile is to progress flexural strength energy absorption capacity and post-cracking resistance.

  • PDF

Effects of infilled concrete and longitudinal rebar on flexural performance of composite PHC pile

  • Bang, Jin Wook;Lee, Bang Yeon;Lee, Byung Jae;Hyun, Jung Hwan;Kim, Yun Yong
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.843-855
    • /
    • 2014
  • Concrete infill and reinforcement are one of the most well-known strengthening methods of structural elements. This study investigated flexural performance of concrete infill composite PHC pile (ICP pile) reinforced by infill concrete and longitudinal rebars in hollow PHC pile. A total four series of pile specimens were tested by four points bending method under simply supported conditions and investigated bending moment experimentally and analytically. From the test results, it was found that although reinforcement of infilled concrete on the pure bending moment of PHC pile was negligible, reinforcement of PHC pile using infilled concrete and longitudinal rebars increase the maximum bending moment with range from 1.95 to 2.31 times than that of conventional PHC pile. The error of bending moment between experimental results and predicted results by nonlinear sectional analysis on the basis of the conventional layered sectional approach was in the range of -2.54 % to 2.80 %. The axial compression and moment interaction analysis for ICP piles shows more significant strengthening effects of infilled concrete and longitudinal rebars.

Reinforcement Effect of Steel-Concrete Composite Group Piles by Numerical Analysis (수치해석을 이용한 강관합성 무리말뚝의 보강효과 분석)

  • Chung, Moon-Kyung;Lee, Si-Hoon;Lee, Ju-Hyung;Kwak, Ki-Seok;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.29-38
    • /
    • 2010
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the hiller concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter, pile distance and loading direction. The results showed that the axial capacity of the composite pile was about 90% larger than that of the steel pipe pile while similar to that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was about 50% lager than that of the steel pile and about 22% larger than that of the concrete pile.

Utilization of Waste Concrete as Vertical Drain Material (연직배수재료로 폐콘크리트 활용에 관한 기초연구)

  • 이용수;정하익;김우성;권용완
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.571-576
    • /
    • 2001
  • This paper presents the utilization of waste concrete as vertical drain material. The materials used as vertical drain material were the waste concrete, obtained from the demolished apartments or concrete structure and sand. In this study, laboratory model test was performed to investigate settlement and bearing capacity between sand compaction pile and waste concrete compaction pile. The results of laboratory model test showed that the improvement efficiency of soft ground by waste concrete compaction pile was better than sand compaction pile.

  • PDF

Experimental study on axial response of different pile materials in organic soil

  • Canakci, Hanifi;Hamed, Majid
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.899-917
    • /
    • 2017
  • Sixty four tests were performed in a steel tank to investigate the axial responses of piles driven into organic soil prepared at two different densities using a drop hammer. Four different pile materials were used: wood, steel, smooth concrete, and rough concrete, with different length to diameter ratios. The results of the load tests showed that the shaft load capacity of rough concrete piles continuously increased with pile settlement. In contrast, the others pile types reached the ultimate shaft resistance at a settlement equal to about 10% of the pile diameter. The ratios of base to shaft capacities of the piles were found to vary with the length to diameter ratio, surface roughness, and the density of the organic soil. The ultimate unit shaft resistance of the rough concrete pile was always greater than that of other piles irrespective of soil condition and pile length. However, the ultimate base resistance of all piles was approximately close to each other.

Shear Strength Enhancement of Hollow PHC Pile Reinforced with Infilled Concrete and Shear Reinforcement (내부충전 콘크리트와 전단철근을 이용한 중공 PHC말뚝의 전단보강 효과)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.71-78
    • /
    • 2012
  • In order to improve the shear strength of conventional pre-tensioned spun high strength concrete (PHC) pile, concrete-infilled composite PHC (ICP) pile, a PHC pile reinforced by means of shear reinforcement and infilled concrete, is proposed. Two types of specimens were cast and tested according to KS (Korean Standards) to verify the shear strength enhancement of ICP pile. Based on the test results, it was found that the KS method was not suitable due to causing shear failure of ICP pile. However, shear strength enhancement was clearly verified. The obtained shear strength of the ICP pile was more than twice that of conventional PHC pile. In addition, the shear strength of ICP pile reinforced with longitudinal reinforcement was estimated to be more than 2.5 times greater than that of conventional PHC pile. The allowable shear force of ICP pile, which was determined by the allowable stress design process, indicated a large safety factor of more than 2.9 compared to the test results.