• 제목/요약/키워드: Concrete Mixing

검색결과 1,003건 처리시간 0.031초

터널의 품질관리를 위한 숏크리트 초기강도의 현장강도 시험기술 (Field Testing Methods on Early Shotcrete Strength for Tunnel Quality Control)

  • 홍의준;장석부;이성우;김기림;문상조
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.468-476
    • /
    • 2007
  • Generally, the strength of the field shotcrete is heavily dependent on the field mixing and spraying conditions so that it is different from the strength of the shotcrete mixed in laboratories. As a support member, the early strength of shotcrete unlike concrete as structural material is very important to the initial stabilization of the excavation face in tunnels. Therefore, the field methods to efficiently test the early strength of shotcrete have been highly required. This paper aimed to verify the pneumatic pin penetration test and the point load test for measuring the early strength of the field shotcrete. Through a series of uniaxial compression, pin penetration, and point load tests for the range of the early shotcrete strength, two equations to estimate reliably the uniaxial compressive strength by the pin penetration and the point load tests were derived. Field tests in working tunnel were carried out in order to estimate the economic efficiency. As a result, pin penetration method was proved to be the most effective method for testing the early strength of the field shotcrete.

  • PDF

Prediction of expansion of electric arc furnace oxidizing slag mortar using MNLR and BPN

  • Kuo, Wen-Ten;Juang, Chuen-Ul
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.111-118
    • /
    • 2017
  • The present study established prediction models based on multiple nonlinear regressions (MNLRs) and backpropagation neural networks (BPNs) for the expansion of cement mortar caused by oxidization slag that was used as a replacement of the aggregate. The data used for the models were obtained from actual laboratory tests on specimens that were produced with water/cement ratios of 0.485 or 1.5, within which 0%, 10%, 20%, 30%, 40%, or 50% of the cement had been replaced by oxidization slag from electric-arc furnaces; the samples underwent high-temperature curing at either $80^{\circ}C$ or $100^{\circ}C$ for 1-4 days. The varied mixing ratios, curing conditions, and water/cement ratios were all used as input parameters for the expansion prediction models, which were subsequently evaluated based on their performance levels. Models of both the MNLR and BPN groups exhibited $R^2$ values greater than 0.8, indicating the effectiveness of both models. However, the BPN models were found to be the most accurate models.

탄소섬유길이 및 혼입량에 따른 폴리우레아 도막방수재의 인장성능 변화 연구 (A Study on the Tensile Performance Change of Polyurea Waterproof Membrane Coat by Amount of Carbon Milled Fiber)

  • 박진상;최수영;박완구;김동범;김병일;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.242-243
    • /
    • 2017
  • Despite its excellent properties, polyurea coating waterproofing material is exposed to sunlight when it is applied to the exterior wall of concrete by exposed waterproofing method such as a roof of a building, resulting in a problem of causing a large deterioration in performance compared to initial properties. The purpose of this study is to investigate the effect of carbon fiber incorporation on the performance of carbon fiber - reinforced polyureas and to study the optimum carbon fiber length and content respectively. Result of the study confirmed that the performance of the carbon fiber was improved by 2% or more, and the carbon fiber length was 30 ㎛ and the mixing ratio was 3%. It is expected that stable durability can be secured when manufacturing fiber-incorporated polyureas.

  • PDF

액체밀도계에 의한 시멘트의 분말도 신속평가에서 용액 종류 및 온도변화의 영향 (Type of Solution and the Effects of Temperature Change in a Rapid Appraisal of Cement Fineness with a Liquid Densimeter)

  • 이재진;김민상;문병룡;김영태;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.167-168
    • /
    • 2017
  • With the recent increase in demand for construction there has been an increase in the use of the raw material cement when mixing concrete; managing quality of cement powder, therefore, is most important. Therefore this study sought at first to develop a rapid appraisal using the Hydrometer method researched previously, for it was thought that when suspending cement in a solution and applying the Hydrometer method to it the temperature changes in the solution would have a great effect on the density value of the Hydrometer method; yet there has been no report of such influence factors. Therefore after analyzing the influence factors that the type of suspending solution and changes in temperature could have on rapid appraisal of fineness, using the Hydrometer method, this study was able to determine that using water at 20℃ was the most appropriate, and with every temperature increase of 10℃ the value of fineness should also be increased above or below 7% as well.

  • PDF

현대건축공간에 나타나는 비물성 표현방식에 관한 연구 - 쿠마겐코와 헤르조그&드뮤론을 중심으로 - (A Study on the Expression Method of Immateriality in Contemporary Architectural Space - Kengo Kuma and Herzog & De meuron -)

  • 유종호;이정욱
    • 한국실내디자인학회논문집
    • /
    • 제23권1호
    • /
    • pp.3-13
    • /
    • 2014
  • After The Industrial Revolution in 18th century, constructions were done with universal material (concrete) in everywhere instead of using materials that are produced in each country because of development of industry material and transportation. This change caused the buildings to become trite with no local characteristics. Hereupon, the study intends to understand the essence of matter and restore various construction methods of each matter with the topic of 'Immateriality'. Immateriality is the revealed concept based on Materiality. Consequently the process and characteristics of immateriality shown on the works of Kuma Kengo and Herzog & de Meuron, three kinds of features can be found of immateriality expression mode. They are as in the following. First, there is a mode of transforming the shape and properties in physical or psychological way by observer. Second, there is a mode of conflating the shape and properties in physical or psychological way by observer. Third, there is a mode of mixing the shape and properties in physical or psychological way by observer.

국내 현장가열재생아스팔트 시공 혼합물 시험평가 (A Case Study of Hot In-Place Recycling Asphalt Mixture in Korea)

  • 권수안;양성린;이재준;홍재청;임재규
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.57-63
    • /
    • 2013
  • PURPOSES: This study is to investigate the Hot In-Place recycling asphalt mixture in Korea using field produced materials. METHODS: Hot In-Place reclaimed asphalt mixture was investigated to evaluate the mixture properties based on various test results such as Marshall Test, Indirect Tensile Test, TSR, and Wheel Tracking Test. These test values were compared with domestic standard specification. RESULTS: The result of the laboratory experiment indicates that the Hot In-Place Reclaimed(HIR) asphalt mixture produced at the field constrution site was satisfied all of the test criteria such as Indirect tensile test, Marshall and TSR test, and wheel tracking test. During the test, the research team found that current HIR system is required an extention of mixing time to improve quality and to reduce variation of sample to sample. Although the current HIR mixture was passed the test criteria, there is a potential capability to enhance the mixture properties as extend mixting time. CONCLUSIONS: Based on these laboratory test results, It would be concluded that domestic HIR mixture's properties were satisfied all standard specification related with evaluation of recycling asphalt mixtures. Based on this case study result, there is a chance to save construction cost and increase the usage of reclaimed asphalt concrete in the future.

Study on CO2 Emission Reduction Effects of Using Waste Cementitious Powder as an Alternative Raw Material

  • Park, Dong-Cheon;Kwon, Eun-Hee;Hwang, Jong-Uk;Ahn, Jae-Cheol
    • 한국건축시공학회지
    • /
    • 제14권2호
    • /
    • pp.187-194
    • /
    • 2014
  • With environmental regulations continuously being strengthened internationally the need to control environmental pollution and environmental load is emerging in Korea. The purpose of this study is to seek methods or using waste cementitious powder as an alternative raw material for limestone through the optimization of raw material and to quantitatively analyze the resulting reduction of $CO_2$ emission in order to contribute to solving the issue of waste, which is the biggest issue in relation to construction and global warming. The results of the study, show that waste cementitious powder can be used as an alternative raw material for limestone at OPC level, but it was also found that mixing fine aggregate cementitious powder into waste cementitious powder significantly affected the substitution rate for limestone with waste cementitious powder and the reduction of greenhouse gas. In particular, when fine aggregate cementitious powder was used at a rate of 0~20%, the substitution rate for limestone and the reduction in the rate of greenhouse gas emission was significantly reduced. It is thought that a technique to efficiently separate and discharge the fine aggregate cementitious powder mixed in waste cementitious powder needs to be developed in the future.

Unconfined compressive strength property and its mechanism of construction waste stabilized lightweight soil

  • Zhao, Xiaoqing;Zhao, Gui;Li, Jiawei;Zhang, Peng
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.307-314
    • /
    • 2019
  • Light construction waste (LCW) particles are pieces of light concrete or insulation wall with light quality and certain strength, containing rich isolated and disconnected pores. Mixing LCW particles with soil can be one of the alternative lightweight soils. It can lighten and stabilize the deep-thick soft soil in-situ. In this study, the unconfined compressive strength (UCS) and its mechanism of Construction Waste Stabilized Lightweight Soil (CWSLS) are investigated. According to the prescription design, totally 35 sets of specimens are tested for the index of dry density (DD) and unconfined compressive strength (UCS). The results show that the DD of CWSLS is mainly affected by LCW content, and it decreases obviously with the increase of LCW content, while increases slightly with the increase of cement content. The UCS of CWSLS first increases and then decreases with the increase of LCW content, existing a peak value. The UCS increases linearly with the increase of cement content, while the strength growth rate is dramatically affected by the different LCW contents. The UCS of CWSLS mainly comes from the skeleton impaction of LCW particles and the gelation of soil-cement composite slurry. According to the distribution of LCW particles and soil-cement composite slurry, CWSLS specimens are divided into three structures: "suspend-dense" structure, "framework-dense" structure and "framework-pore" structure.

정보 자산 보안 위험 추정-정량적, 정성적 방법을 절충한 퍼지 숫자의 활용 (Estimating Information Security Risk-Using Fuzzy Number Compromising Quantitative and Qualitative Methods)

  • 박노진;이동훈
    • 정보보호학회논문지
    • /
    • 제19권6호
    • /
    • pp.175-184
    • /
    • 2009
  • 정보 자산 보안 관련 위험을 추정함에 있어 정성적인 방법과 정량적인 방법이 사용되고 있으나, 두 가지 방법 나름대로 장단점을 갖고 있다. 지나치게 서술적이고 추상적인 정성적 방법과 구체적이지만 자료의 부족으로 인한 정확한 계산이 어려운 정량적 방법의 한계를 어느 정도 극복한 절충된 방법의 개발이 요구된다고 하겠다. 본 논문은 절충의 방법으로서 퍼지 숫자를 이용하는 방법을 제시하고 분석의 예를 보였다. 퍼지 숫자를 이용함으로 자료의 부족함을 전문자의 의견이나 가능한 자료로 대체할 수 있고 위험을 구체적인 수치로 추정할 수 있음을 확인하였다. 가상의 시스템에 대하여 다양한 위협을 가정하여 모의실험을 하였고 시스템에 대한 예상 위험과 비예상 위험을 예측하는 방법을 구현하였다.

Using ANN to predict post-heating mechanical properties of cementitious composites reinforced with multi-scale additives

  • Almashaqbeh, Hashem K.;Irshidat, Mohammad R.;Najjar, Yacoub
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.337-350
    • /
    • 2022
  • This paper focuses on predicting the post-heating mechanical properties of cementitious composites reinforced with multi-scale additives using the Artificial Neural Network (ANN) approach. A total of four different feed-forward ANN models are developed using 261 data sets collected from 18 published sources. The models are optimized using 12 input parameters selected based on a comprehensive literature review to predict the residual compressive strength, the residual flexural strengths, elastic modulus, and fracture energy of heat-damaged cementitious specimens. Furthermore, the ANN is employed to predict the impact of several variables including; the content of polypropylene (PP) microfibers and carbon nanotubes (CNTs) used in the concrete, mortar, or paste mix design, length of PP fibers, the average diameter of CNTs, and the average length of CNTs. The influence of the studied parameters is investigated at different heating levels ranged from 25℃ to 800℃. The results demonstrate that the developed ANN models have a strong potential for predicting the mechanical properties of the heated cementitious composites based on the mixing ingredients in addition to the heating conditions.