• Title/Summary/Keyword: Concrete Mixing

Search Result 1,008, Processing Time 0.031 seconds

Strength development of ground perlite-based geopolymer mortars

  • Celikten, Serhat;Isikdag, Burak
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • Raw perlite is a volcanic alumino-silicate and is used as aggregate in the construction industry. The high silica and alumina contained in the raw perlite allows the production of geopolymer mortar with the help of alkaline solutions. In this study, different geopolymer mortars are obtained by mixing ground perlite (GP), sodium hydroxide (NaOH), water and CEN standard sand and the strength and microstructure of these mortars are investigated. Mortar specimens are placed in the oven 24 hours after casting and kept at different temperatures and times, then the specimens are cured under laboratory conditions until the day of strength tests. After curing, unit weight, ultrasound pulse velocity, flexural and compressive strengths are determined. Experimental results indicate that the mechanical properties of the mortars enhance with increasing oven-curing period and temperatures as well as increasing NaOH molarity. In addition, SEM/EDS and XRD analyses are performed on the mortar specimens and the results are interpreted.

Evaluation of Compressive Strength of Mortar Replaced to High Volume Blast Furnace Slag (고로슬래그 미분말을 다량 치환한 모르타르의 압축강도 평가)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Lee, Se-Bum;Lee, Byoung-Cheon;Shin, Kyoung-Su;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.103-105
    • /
    • 2012
  • With blast-furnace slag is a by-product generated when pig iron is produced. It has been used as the concrete admixture due to high reactivity. However, It causes low strength development during early age. In order to make up for this drawback, in this study, we evaluated compressive strength of mortar replaced with high volume blast-furnace slag. Experimental results, Compressive strength of mortar based on blast-furnace slag is affected by cement type, substitution rate of blast-furnace slag and pH after mixing.

  • PDF

An Experimental Study on the Physical Properties of Mortar Using Crashed Sand (부순모래를 활용한 모르타르의 기초물성에 관한 실험적 연구)

  • Park Jong-Ho;Moon Hyung-Jae;Na Chul-Sung;Choi Se-Jin;Lee Sung-Yun;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.73-76
    • /
    • 2005
  • Recently, Trouble of sand supply is occurred according to exhaustion of natural sand resources. therefore, various measures are proposed for solution of trouble of sand supply and crushed sand among measures is used as one of most universal measures. but crushed sand which have poor particle shape and plenty of makes micro particle the qualify of concrete deteriorated. Therefore, this study evaluated physical properties of mortar using crushed sand and applied evaluation result to fundamental data The result of this study have shown that quality of mortar using crushed sand independently is poor against general mortar. but, mortar flow and compressive strength is increased in case of using crushed sand according to mixing ratio properly.

  • PDF

An Experimental Study on the Physical Properties of Mortar Using EEZ Sand and Crushed Sand (부순모래와 EEZ모래를 혼합사용한 모르타르의 기초물성에 관한 실험적 연구)

  • Park Jong-Ho;Jang Jae-Bong;Na Chul-Sung;Cho Bong-Suk;Kim Jae-Hwan;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.33-36
    • /
    • 2005
  • Recently, Trouble of sand supply is occurred according to exhaustion of natural sand resources. therefore, various measures are proposed for solution of trouble of sand supply. also the government settled trouble of sand supply through application of EEZ sand and crushed sand. but because both EEZ sand and crushed sand are poor against general sand, they lead to lowering of quality of ready-mixed concrete. Therefore, this study evaluated physical properties of mortar using EEZ sand and crushed sand and applied evaluation result to fundamental data The result of this study have shown that quality of mortar using EEZ sand and crushed sand independently is poor against general mortar. but, mortar flow and compressive strength is increased in case of mixing 222 sand and crushed sand properly.

  • PDF

A Study on the Stabilization Plan of the Fine Aggregate in the Southeastern Area Due to the Reduction of Sea Sand Collection (바다모래 채취량 감소로 인한 동남권 잔골재 수급안정화 방안에 관한 연구)

  • Kang, Suk Pyo;Kang, Hye Ju;Hwang, Byoung Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.326-327
    • /
    • 2018
  • It is expected that the proportion of crushed aggregate will increase in order to fill the decreasing supply of sea sand in the southeast area. However, it is necessary to supply the least amount of sea sand to diversify the aggregate source, in order to minimize the mixing ratio of sea sand and crushed sand to minimize the structural stability of the concrete.

  • PDF

A study on optimum mixing derivation of the enviroment-friendly high performance geopolymer paste (친환경 고성능 지오폴리머 페이스트의 적정배합 도출에 관한 연구)

  • Lee, Kang-Pil;Do, Yun-seok;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.107-110
    • /
    • 2009
  • After inquiring into physical characteristics of using fly ash and alkali solution, it was found that higher pH density is favorable to strength development at early age and the higher the age is, the higher the compressive strength gets. Also, it was found that when there is more addition of activator, the compressive strength is higher. I was shown that more than atmospheric curing, steam curing was favorable for development of compressive strength. When the temperature of curing temperature was higher, most of the compressive strengths were higher. Thus, based on this study, it was understood that environmental-friendly chemically combined concrete using fly ash and alkali solution can be utilized without using cement.

  • PDF

Bending Strength and Microstructure of Cement Paste Containing SWCNT Dispersion Solution (SWCNT 분산용액을 혼입한 시멘트 페이스트의 휨강도 및 미세구조)

  • Choi, Ik-Je;Kim, Ji-Hyun;Lee, Soo-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.149-150
    • /
    • 2017
  • It is known that physical and chemical changes of cement hydrates cause problems in the volume stability of concrete. In order to overcome these problems, there is a growing interest in research on mixing technology of cement-based materials and nanomaterials. Among the nanomaterials, carbon nanotubes (CNTs) are attracting attention due to their excellent mechanical properties. The CNTs are made of cylindrically shaped graphene sheets. According to the number of sheets, single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are classified. Although the SWCNT has superior mechanical properties, the research using MWCNT is vigorous due to the difficulty of marketability and manufacturing, but the research using SWCNT is insufficient. In this study, we investigate the effect of SWCNT on the formation of hydrate of cement paste by observing the microstructure of broken cement paste after measuring the flexural strength of cement paste with SWCNT dispersion.

  • PDF

A basic study of Properties of Cement Mortar for 3D Printing Concrete Using Methyl Cellulose Thickener (메틸셀룰로오스(MC)계 증점제 혼입에 따른 3D 프린팅 콘크리트용 시멘트계 모르타르의 특성 변화에 대한 기초적 연구)

  • Kim, Han-Sol;Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.68-69
    • /
    • 2019
  • Integrating 3D printing into architecture is gaining attention because it allows construction of construction structures without formwork. Among them, 3D printing construction materials must have high flow performance and at the same time ensure the performance that does not collapse during lamination. Therefore, in this study, we tried to determine the fluidity and lamination properties of mortar formulations, and set the thickener incorporation ratio as the formulation parameters. As a result of this experiment, it was confirmed that the lamination performance was secured from the thickening agent mixing rate of 1.5%.

  • PDF

Fluidity and strength characteristics according to BSC(Bioinspired Self-Healing Capsule) incorporation rate (BSC(Bioinspired Self-Healing Capsule) 혼입율에 따른 모르타르의 유동성 및 강도 특성)

  • Lee, Jae-In;Kim, Chae-Young;Na, Bum-Su;Song, Won-Il;Kim, Sung-Hoon;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.253-254
    • /
    • 2022
  • In this study, as part of a study to improve the self-healing performance of concrete, the fluidity and strength characteristics of mortar mixed into cement composites were compared and analyzed by controlling the mixing rate of BSC(Bioinspired Self-Healing capsule)

  • PDF

Fluidity and strength characteristics of PCC(Powder Compacted Capsule) mixed mortar according to the type of coating material (코팅재 종류에 따른 PCC(Powder Compacted Capsule) 혼입 모르타르의 유동성 및 강도 특성)

  • Lee, Jae-In;Kim, Chae-Young;Park, Jeong-Yeon;Ji, Dong-Min;Kim, Sung-Hoon;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.255-256
    • /
    • 2022
  • As part of a study to alleviate problems caused by cracks in concrete structures, this study compares and analyzes the fluidity and strength characteristics of mortars used by adjusting the mixing ratio of two types of PCC(Powder Compacted Capsule) manufactured by different methods.

  • PDF