• 제목/요약/키워드: Concrete Filled Tube

검색결과 500건 처리시간 0.028초

콘크리트충전 강관기둥의 응력-변형도 관계에 관한 실험적 연구 (An Experimental Study on the Stress-Strain Relation of Concrete-Filled Steel Tubes)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.210-214
    • /
    • 1995
  • Research on concrete-filled steel columns has been conducted. It is also well known that the load and deformation capacity of concrete-filled steel columns are considerable larger than those of widely used reinforced concrete columns and steel encased concrete columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. This paper, therefore, presents on the stress-strain relation of a concrete filled rectangular steel tube under axial compression. As the results, the axial load verse average axial strain relationship of concrete-filled rectangular steel columns were very stable. The small B/t ratios in concrete-filled rectangular steel columns aren't affected prevention of local buckling but strength enhancement by confinement effect.

  • PDF

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

The behavior of lightweight aggregate concrete filled steel tube columns under eccentric loading

  • Elzien, Abdelgadir;Ji, Bohai;Fu, Zhongqiu;Hu, Zhengqing
    • Steel and Composite Structures
    • /
    • 제11권6호
    • /
    • pp.469-488
    • /
    • 2011
  • This paper consists of two parts; the first part describes the laboratory work concerning the behavior of lightweight aggregate concrete filled steel tubes (LACFT). Based on eccentricity tests, fifty-four specimens with different slenderness ratios (L/D= 3, 7, and 14) were tested. The main parameters varied in the test are: load eccentricity; steel ratio; and slenderness ratio. The standard load-strain curves of LACFT columns under eccentric loading were summarized and significant parameters affecting LACFT column's bearing capacity, failure mechanism and failure mode such as confinement effect and bond strength were all studied and analyzed through the comparison with predicted strength of concrete filled steel tube columns (CFT) using the existing codes such as AISC-LRFD (1999), CHN DBJ 13-51-2003 (2003) and CHN CECS 28:90 (1990). The second part of this paper presents the results of parametric study and introduces a practical and accurate method for determination of the maximum compressive strength of confined concrete core ($f_{max}$), In addition to, the study of the effect of aspect-ratio and length-width ratio on the yield stress of steel tubes ( $f_{sy}$) under biaxial state of stress in CFT columns and the effect of these two factors on the ultimate load carrying capacity of axially loaded CFT/LACFT columns.

원형강관으로 구속된 콘크리트의 역학적 거동 특성에 관한 연구 (A Study on Properties of Mechanical Behaviors of Concrete Confined by Circular Steel Tube)

  • 박정민;김화중
    • 콘크리트학회지
    • /
    • 제7권3호
    • /
    • pp.199-210
    • /
    • 1995
  • 충전형 강관콘크리트 구조는 강관과 콘크리트 두 재료의 이질적인 재료특성을 상호 보완적으로 발휘하여 구조적 성능향상을 꾀한 것으로서 제구조 특성상 우수한 구조형식이라 할 수 있다. 강관으로 구속된 콘크리트가 중심축력을 받게 되면 내부의 콘크리트는 압괴에 의한 체적 팽창을 외부의 강관에 의해 구속 받게 되므로 3축 압축응력 상태로 되어 압축강도가 증대된다. 또한 콘크리트의 압괴에 의한 탈락 현상이 방지되므로서 단면의 결손이 없어져 내력 저하가 작아진다는 잇점을 가진다. 따라서 본 연구에서는 원형강관으로 구속된 내부 콘크리트의 구조적 거동 특성을 규명하기 위한 것으로서 폭두께비와 충전 콘크리트의 강도를 주요 변수로 하여 일련의 실험을 통하여 강관으로 구속(3축 응력)된 콘크리트의 구조적 거동 특성을 고찰하였다. 일련의 실험을 통하여 얻어진 결론을 요약하면 다음과 같다. (1)강관에 의한 콘크리트의 구속효과는 강관의 폭두께비와 충전 콘크리트의 강도가 낮을수록 현저하며, 원형강관으로 구속된 내부 콘크리트는 최대내력시의 변형능력에 있어서 횡방향 구속이 없는 콘크리트보다 4~7배 정도까지 증대시켜 연성효과를 높일 수 있을 것으로 기대된다. (2)콘크리트의 구속계수를 이용하여 강관으로 구속된 내부 콘크리트의 강도와 콘트리트 충전강관 기둥의 최대내력을 산정할 수 있는 식을 제시하였다.

콘크리트 충전 FRP 원통관의 압축거동에 관한 실험적 연구 (Experimental Investigation on the Compression Behavior of Concrete Filled Circular FRP Tubes)

  • 주형중;이승식;김영호;박종화;윤순종
    • Composites Research
    • /
    • 제21권3호
    • /
    • pp.24-30
    • /
    • 2008
  • 건설분야에서 사용하고 있는 건설재료인 콘크리트는 대부분 외기에 직접 노출되어 있기 때문에 유해환경으로부터 열화되어 내구성이 저하될 수 있다. 특히, 교량의 교각 및 말뚝과 같은 부재들은 수분의 침투, 동결융해 등의 영향으로 내구성의 감소정도가 심각할 수 있다. 최근 이러한 문제점을 보완하고 효율적인 부재를 제작하기 위해 토목분야에서는 CFFT(Concrete Filled FRP Tube)가 제안되어 연구되고 있다. CFFT는 효율적으로 콘크리트를 구속하여 압축성능을 향상시키고, 화학적 저항성이 우수한 FRP가 외부에 노출되어 반영구적으로 사용될 수 있으며, 연성, 에너지 흡수능력 등을 향상시키는 것으로 평가되고 있다. 그러나 CFFT에 대한 설계규준이 마련되어 있지 않고, FRP-콘크리트 합성부재에 대한 구조거동이 불확실하여 현장에 적용하기 위해서는 다양한 연구가 선행되어야 한다. 이 연구에서는 CFFT에 대한 압축실험을 통해 구조적 거동을 조사하였으며, 실험결과와 기존 연구결과를 비교 분석하여 극한압축강도 및 변형률을 예측할 수 있는 식을 제안하였다. 또한, CFFT의 압축실험에서 고려되어야 할 사항들에 대해 간략히 설명하였다.

Fire Behavior of Reinforced Concrete Filled Square Steel Tube Columns Under Constant Axial Loads

  • Jeeyoung Lee;Seulgi Han;Jinwon Shin;Inrak Choi;Sungmo Choi
    • 국제초고층학회논문집
    • /
    • 제13권1호
    • /
    • pp.85-95
    • /
    • 2024
  • A composite member made of concrete-filled steel tubes (CFT columns) has been recognized for its fire resistance due to the thermal mass effect of concrete inside the steel tube, as shown in various studies. In this study, the fire resistance performance of reinforced CFT columns under constant axial load was evaluated using finite element analysis with ABAQUS. For this purpose, the variables including cross-section size, steel tube thickness, and concrete cover thickness were set, and the temperature distribution in the column cross-section exposed to a standard fire was investigated using heat transfer analysis. Ultimately, a P-M interaction curve was obtained by evaluating the overall residual strength of columns, and the fire resistance time was determined by evaluating axial displacement-time responses due to the reduction in load capacity during fire through stress analysis.

Numerical study on axially loaded ultra-high strength concrete-filled dual steel columns

  • Pons, David;Espinos, Ana;Albero, Vicente;Romero, Manuel L.
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.705-717
    • /
    • 2018
  • This paper presents a numerical investigation on the mechanical performance of concrete-filled dual steel tubular columns of circular section subjected to concentric axial load. A three-dimensional numerical model is developed and validated against a series of experimental tests. A good agreement is obtained between the experimental and numerical results, both in the peak load value and in the ascending and descending branches of the load-displacement curves. By means of the numerical model, a parametric study is carried out to investigate the influence of the main parameters that determine the axial capacity of double-tube columns, such as the member slenderness, inner and outer steel tube thicknesses and the concrete grade - of both the outer concrete ring and inner core -, including ultra-high strength concrete. A total number of 163 numerical simulations are carried out, by combining the different parameters. Specific indexes are defined (Strength Index, Concrete-Steel Contribution Ratio, Inner Concrete Contribution Ratio) to help rating the relative mechanical performance of dual steel tubular columns as compared to conventional concrete-filled steel tubular columns, and practical design recommendations are subsequently given.

Shear transfer mechanisms in composite columns: an experimental study

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • 제7권5호
    • /
    • pp.377-390
    • /
    • 2007
  • In the design of concrete filled composite columns, it is assumed that the load transfer between the steel tube and concrete core has to be achieved by the natural bond. However, it is important to investigate the mechanisms of shear transfer due to the possibility of steel-concrete interface separation. This paper deals with the contribution of headed stud bolt shear connectors and angles to improve the shear resistance of the steel-concrete interface using push-out tests. In order to determine the influence of the shear connectors, altogether three specimens of concrete filled composite column were tested: one without mechanical shear connectors, one with four stud bolt shear connectors and one with four angles. The experimental results showed the mechanisms of shear transfer and also the contribution of the angles and stud bolts to the shear resistance and the force transfer capacity.

Bond-slip behavior of reactive powder concrete-filled square steel tube

  • Qiuwei, Wang;Lu, Wang;Hang, Zhao
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.819-830
    • /
    • 2022
  • This paper presented an experimental study of the bond-slip behavior of reactive powder concrete (RPC)-filled square steel tube. A total of 18 short composite specimens were designed forstatic push-out test, and information on their failure patterns, load-slip behavior and bond strength was presented. The effects of width-to-thickness ratio, height-to-width ratio and the compressive strength of RPC on the bond behavior were discussed. The experimental results show that:(1) the push-out specimens remain intact and no visible local buckling appears on the steel tube, and the interfacial scratches are even more pronounced at the internal steel tube of loading end; (2) the bond load-slip curves with different width-to-thickness ratios can be divided into two types, and the main difference is whether the curves have a drop in load with increasing slip; (3) the bond strength decreases with the increase of the width-to-thickness ratio and height-width ratio, while the influence of RPC strength is not consistent; (4) the slippage has no definite correlation with bond strength and the influence of designed parameters on slippage is not evident. On the basis of the above analysis, the expressions of interface friction stress and mechanical interaction stress are determined by neglecting chemical adhesive force, and the calculation model of bond strength for RPC filled in square steel tube specimens is proposed. The theoretical results agree well with the experimental data.

Experimental behaviour of circular concrete filled steel tube columns under lateral cyclic loading

  • Cao, Vui Van;Vo, Cuong Trung;Nguyen, Phuoc Trong;Ashraf, Mahmud
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.445-460
    • /
    • 2021
  • This study experimentally explored the behaviour of 12 concrete filled steel tube (CFST) and steel tube columns subjected to lateral cyclic loading. The L/D ratio was 12.3 while D/t ratios were 45.4, 37.8 and 32.4, classifying these 12 specimens into 3 groups. Each group included 3 CFST and 1 steel tube columns and were tested to failure. The experimental results indicated that CFST specimens reached the state of 'collapse prevention' (drift 4%) prior to the occurrence of local buckling. Strength degradation of CFST specimens did not occur up to the failure by buckling. This showed the favourable characteristic of CFST columns in preventing collapse of structures subjected to earthquakes. The high energy absorption capability in the post collapse limit state was appropriate for dissipating energy in structures. Compared to steel tube columns, CFST columns delayed local buckling and prevented inward buckling. Consequently, CFST columns exhibited their outstanding seismic performance in terms of the increased ultimate resistance, capacity to sustain 2-3 additional load cycles and significantly higher drift. A simple and reasonably accurate model was proposed to predict the ultimate strength of CFST columns under lateral cyclic loading.