• Title/Summary/Keyword: Concrete Elastic Modulus

Search Result 478, Processing Time 0.034 seconds

A Study on the Strength and Mechanical Characteristics of Normal and High-Strength Fly-Ash Concretes (플라이애쉬 콘크리트의 강도 및 역학적 특성에 관한 연구)

  • 오병환;고재군
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.87-95
    • /
    • 1991
  • Presented is a study on the strength and mechanical characteristics of various fly ash concrete mixes. To this end, a comprehensive experimental study was conducted for normal and high-strength fly ash concretes. The fly-asb contents were varied from 0% to 30% of cement weight to explore the effects of fly ash addition. The op timum fly-ash amounts reqUIred to obtain the desired strengths were established from the present study. ThE prediction equations for the flexural -strength. splitting tensile strength and elastic modulus of lly-ash concrete were also proposed.

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

Development of Concrete Material Models for Performance-Based Design Code (성능기반 설계기준 작성을 위한 콘크리트 재료모델의 개발)

  • Kim, Jee-Sang;Lee, Kwang-Myung;Choi, Yeon-Wang;Jung, Sang-Hwa;Moon, Jae-Heum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.975-978
    • /
    • 2008
  • To strengthen the technological competitiveness of the construction market in Korea, researches have been performed to replace the prescriptive design codes (PD) to the performance-based ones (PBD). As one of the basic requirements for PBDs, development of the optimized concrete material models for domestic applications have been tried by comparing and verifying the pre-existing models with the observations and quality evaluations of ready mixed concretes that are used in the domestic market. This paper shows the summary of the present state of the research progress in the areas of compressive strength and elastic modulus.

  • PDF

Lateral Displacement Analysis of Concrete Electric Pole Foundation Grounds (배전용 콘크리트전주 기초지반의 횡방향변위 분석)

  • Ahn, Tae-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.42-49
    • /
    • 2009
  • The effects of various forces acting on concrete pole are analyzed using finite element method how the forces affect on ground displacement. The soil types, wind load location of anchor block embedded depth of pole, and distance between poles are varied to find out effects on lateral displacement. Anchor block is effective when it is located at 1/4 of embedded depth The displacement is decreases as elastic modulus increases. Concrete reinforcement for loosened ground is necessary for double poles because double poles cause large excavation. When embedded depth ratio decrease, lateral displacement increase as closer to ground surface. Large embedded depth is effective to reduce lateral displacement, and the distance between poles is not much large factor.

A Fundamental Study on the High Strength Concrete Using Silica Fume (실리카흄을 혼합(混合)한 콘크리트의 고강도화(高强度化)에 관한 기초적(基礎的) 연구(研究))

  • Moon, Han Young;Kim, Jin Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.33-41
    • /
    • 1992
  • For the purpose of improving the strength of Concrete, Silica Fume which has $SiO_2$ content of 90% and average particle diameter of $0.2{\mu}m$ was substituted to some extent as a cementious material of concrete. By means of using high range water reducing admixture and reducing water-cementions material ratio, the high strength mortar and concrete which have compressive strength of $865kg/cm^2$, $725kg/cm^2$, respectively were acquired. But the fact that the slump loss according to elapsed time was high and the tensile strength and elastic modulus were not improved sufficiently was the problem to be solved.

  • PDF

Axial capacity of FRP reinforced concrete columns: Empirical, neural and tree based methods

  • Saha Dauji
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.283-300
    • /
    • 2024
  • Machine learning (ML) models based on artificial neural network (ANN) and decision tree (DT) were developed for estimation of axial capacity of concrete columns reinforced with fiber reinforced polymer (FRP) bars. Between the design codes, the Canadian code provides better formulation compared to the Australian or American code. For empirical models based on elastic modulus of FRP, Hadhood et al. (2017) model performed best. Whereas for empirical models based on tensile strength of FRP, as well as all empirical models, Raza et al. (2021) was adjudged superior. However, compared to the empirical models, all ML models exhibited superior performance according to all five performance metrics considered. The performance of ANN and DT models were comparable in general. Under the present setup, inclusion of the transverse reinforcement information did not improve the accuracy of estimation with either ANN or DT. With selective use of inputs, and a much simpler ANN architecture (4-3-1) compared to that reported in literature (Raza et al. 2020: 6-11-11-1), marginal improvement in correlation could be achieved. The metrics for the best model from the study was a correlation of 0.94, absolute errors between 420 kN to 530 kN, and the range being 0.39 to 0.51 for relative errors. Though much superior performance could be obtained using ANN/DT models over empirical models, further work towards improving accuracy of the estimation is indicated before design of FRP reinforced concrete columns using ML may be considered for design codes.

Long-Term Performance Evaluation of Concrete Utilizing Oyster Shell in Lieu of Fine Aggregate (굴패각을 잔골재로 대체 사용한 콘크리트의 장기성능 평가)

  • Yang, Eun-Ik;Yi, Seong-Tae;Kim, Hak-Mo;Shim, Jae-Seol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.280-287
    • /
    • 2003
  • To evaluate the practical application of oyster shells(OS) as construction materials, an experimental study was performed. More specifically, the long-term mechanical properties and durability of concrete blended with oyster shells were investigated. Test results indicate that long-term strength of concrete blended with 10% oyster shells is almost identical to that of normal concrete. However, the long-term strength of concrete blended with 20% oyster shells is appreciably lower than that of normal concrete. Thereby, concrete with higher oyster shell blend has the possibility of negatively influencing the concrete long-term strength. Elastic modulus of concrete blended with crushed oyster shells decreases as the blending mixture rate increases. Namely, the modulus is reduced to approximately 10∼15% when oyster shells are blended up to 20% as the fine aggregate. The drying shrinkage strain increases with an increasing crushed oyster shells substitution rate. In addition, the existing model code of drying shrinkage and creep do not coincide with the test results of this study. An adequate prediction equation needs to be developed. The utilization of oyster shells as the fine aggregate in concrete has an insignificant effect on fleering and thawing resistance, carbonation and chemical attack of concrete. However, water permeability is considerably improved.

Mechanical Properties of High Performance Concrete with Material for Lateral Confinement (횡구속재 변화에 따른 고성능 콘크리트의 역학적 특성)

  • Han, Cheon-Goo;Jung, Duk-Woo;Jin, En-Hao
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.110-116
    • /
    • 2003
  • Recently, as concrete structure becomes high rise and large scaled tendency, demands for high performance concrete such as high strength, high fluidity and high durability has been increased. Even though high performance concrete performs high strength, workability and durability, compared to with those of normal concrete, it is more brittle than normal concrete. Accordingly, this paper is intended to improve toughness and compressive strength through investigating the mechanical properties of the high performance concrete confined with metal lath, glass fiber and carbon fiber laterally in the case of 30% and 40% of W/B. According to the results, the compressive strength increases in order of metal lath, carbon fiber and glass fiber. Considering strain-stress curve with the kinds of material for lateral confinement, while brittleness failure occurs in plain concrete just after maximum load, it is improved in some degree in confined concrete due to increase of the strain by increase of toughness. Elastic modulus increases slightly in case of confined concrete, like the compressing strength.

Flowability and Strength of Self-compacting Concrete Mixed with Tailings from the Sangdong Tungsten Mine (상동관상 광미를 혼합한 자기충전콘크리트의 유동 및 강도 특성)

  • Choi, Yun Wang;Kim, Yong Jic;Jung, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.767-774
    • /
    • 2006
  • This study has focused on the possibility for recycling of tailings from the sangdong tungsten mine as powder (TA) of self-compacting concrete (SCC). The experimental tests for entrapped water ratio were carried out in accordance with the specified method by Okamura. The rheological measurements of cement paste were conducted by using a commercially digital Brookfield viscometer (Model LVDV-II+) equipped with cylindrical spindles, also tests for slump-flow, time required to reach 500 mm of slump flow (sec), time required to flow through V-funnel (sec) and filling height of U-box test (mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering (JSCE). The results of this study, entrapped water ratio was decreased with increasing replacement of TA. Thickness of pseudo water film was increased, and mean plastic viscosity was decreased with increasing replacement of TA. And slump-flow of SCC was decreased with increasing replacement of TA. But time required to reach 500 mm of slump flow (sec), time required to flow through V-funnel (sec) and filling height of U-box test (mm) were satisfied a prescribed range. The mechanical properties including compressive strength, splitting tensile strength and elastic modulus were checked with the requirements specified by Korean Industrial Standard (KS). The compressive strength of SCC was decreased with increasing replacement of TA, splitting tensile strength and elastic modulus were similar to those of normal concrete.