• 제목/요약/키워드: Concrete Compressive Strength Prediction

검색결과 370건 처리시간 0.02초

Machine learning in concrete's strength prediction

  • Al-Gburi, Saddam N.A.;Akpinar, Pinar;Helwan, Abdulkader
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.433-444
    • /
    • 2022
  • Concrete's compressive strength is widely studied in order to understand many qualities and the grade of the concrete mixture. Conventional civil engineering tests involve time and resources consuming laboratory operations which results in the deterioration of concrete samples. Proposing efficient non-destructive models for the prediction of concrete compressive strength will certainly yield advancements in concrete studies. In this study, the efficiency of using radial basis function neural network (RBFNN) which is not common in this field, is studied for the concrete compressive strength prediction. Complementary studies with back propagation neural network (BPNN), which is commonly used in this field, have also been carried out in order to verify the efficiency of RBFNN for compressive strength prediction. A total of 13 input parameters, including novel ones such as cement's and fly ash's compositional information, have been employed in the prediction models with RBFNN and BPNN since all these parameters are known to influence concrete strength. Three different train: test ratios were tested with both models, while different hidden neurons, epochs, and spread values were introduced to determine the optimum parameters for yielding the best prediction results. Prediction results obtained by RBFNN are observed to yield satisfactory high correlation coefficients and satisfactory low mean square error values when compared to the results in the previous studies, indicating the efficiency of the proposed model.

폴리머 콘크리트의 압축 및 휨강도 발현 특성 (Compressive and Flexural Strength Development Characteristics of Polymer Concrete)

  • 김남길;연규석
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.101-110
    • /
    • 2018
  • This study experimentally investigated the compressive and flexyral strength development characteristics of polymer concrete using four different type polymeric resins such as unsaturated polyester, vinyl ester, epoxy, and PMMA (polymethyl methacrylate) as binders. The test results show that the average compressive strength of those four different polymer concretes was 88.70 MPa, the average flexural strength was 20.30 MPa. Those test results show that compressive and flexural strengths of polymer concrete were much stronger than compressive and flexural strengths of ordinary Portland cement concrete. In addition, the relative gains of the compressive strength development at the age of 24 hrs compared to the age of 168 hrs were 68.6~88.3 %. Also, the relative gains of the flexural strength development at the age of 24 hrs compared to the age of 168 hrs were 73.8~93.4 %. These test results show that compressive and flexural strengths of each polymer concrete tested in this study were developed at the early age. Moreover, the prediction equations of compressive and flexural strength developments regarding the age were determined. The determined prediction equations could be applied to forecast the compressive and flexural strength developments of polymer concrete investigated in this study because those prediction equations have the high coefficients of correlation. Last, the relations between the compressive strength and the flexural strength of polymer concrete were determined and the flexural/compressive strength ratios were from 1/4 to 1/5. These results show that polymer concretes investigated in this study were appropriate as a flexural member of a concrete structure because the flexural/compressive strength ratios of polymer concrete were much higher than the flexural/compressive strength ratios of Portland cement concrete.

Prediction model of resistivity and compressive strength of waste LCD glass concrete

  • Wang, Chien-Chih
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.467-475
    • /
    • 2017
  • The purpose of this study is to establish a prediction model for the electrical resistivity ($E_r$) of self-consolidating concrete by using waste LCD (liquid crystal display) glass as part of the fine aggregate and then, to analyze the results obtained from a series of laboratory tests. A hyperbolic function is used to perform nonlinear multivariate regression analysis of the electrical resistivity prediction model, with parameters such as water-binder ratio (w/b), curing age (t) and waste glass content (G). Furthermore, the relationship of compressive strength and electrical resistivity of waste LCD glass concrete is also found by a logarithm function, while compressive strength is evaluated by the electrical resistivity of non-destructive testing (NDT). According to relative regression analysis, the electrical resistivity and compressive strength prediction models are developed, and the results show that a good agreement is obtained using the proposed prediction models. From the comparison between the predicted analysis values and test results, the MAPE value of electrical resistivity is 17.0-18.2% and less than 20%, the MAPE value of compressive strength evaluated by $E_r$ is 5.9-10.6% and nearly less than 10%. Therefore, the prediction models established in this study have good predictive ability for electrical resistivity and compressive strength of waste LCD glass concrete. However, further study is needed in regard to applying the proposed prediction models to other ranges of mixture parameters.

Prediction of compressive strength of concrete using multiple regression model

  • Chore, H.S.;Shelke, N.L.
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.837-851
    • /
    • 2013
  • In construction industry, strength is a primary criterion in selecting a concrete for a particular application. The concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting for 28 days for such a test would serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in large construction sites. Therefore, rapid and reliable prediction of the strength of concrete would be of great significance. On this backdrop, the method is proposed to establish a predictive relationship between properties and proportions of ingredients of concrete, compaction factor, weight of concrete cubes and strength of concrete whereby the strength of concrete can be predicted at early age. Multiple regression analysis was carried out for predicting the compressive strength of concrete containing Portland Pozolana cement using statistical analysis for the concrete data obtained from the experimental work done in this study. The multiple linear regression models yielded fairly good correlation coefficient for the prediction of compressive strength for 7, 28 and 40 days curing. The results indicate that the proposed regression models are effectively capable of evaluating the compressive strength of the concrete containing Portaland Pozolana Cement. The derived formulas are very simple, straightforward and provide an effective analysis tool accessible to practicing engineers.

A predictive model for compressive strength of waste LCD glass concrete by nonlinear-multivariate regression

  • Wang, C.C.;Chen, T.T.;Wang, H.Y.;Huang, Chi
    • Computers and Concrete
    • /
    • 제13권4호
    • /
    • pp.531-545
    • /
    • 2014
  • The purpose of this paper is to develop a prediction model for the compressive strength of waste LCD glass applied in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. The hyperbolic function was used to perform the nonlinear-multivariate regression analysis of the compressive strength prediction model with the following parameters: water-binder ratio w/b, curing age t, and waste glass content G. According to the relative regression analysis, the compressive strength prediction model is developed. The calculated results are in accord with the laboratory measured data, which are the concrete compressive strengths of different mix proportions. In addition, a coefficient of determination $R^2$ value between 0.93 and 0.96 and a mean absolute percentage error MAPE between 5.4% and 8.4% were obtained by regression analysis using the predicted compressive analysis value, and the test results are also excellent. Therefore, the predicted results for compressive strength are highly accurate for waste LCD glass applied in concrete. Additionally, this predicted model exhibits a good predictive capacity when employed to calculate the compressive strength of washed glass sand concrete.

Evaluation of mathematical models for prediction of slump, compressive strength and durability of concrete with limestone powder

  • Bazrafkan, Aryan;Habibi, Alireza;Sayari, Arash
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.463-478
    • /
    • 2020
  • Multiple mathematical modeling for prediction of slump, compressive strength and depth of water penetration at 28 days were performed using statistical analysis for the concrete containing waste limestone powder as partial replacement of sand obtained from experimental program reported in this research. To extract experimental data, 180 concrete cubic samples with 20 different mix designs were investigated. The twenty non-linear regression models were used to predict each of the concrete properties including slump, compressive strength and water depth penetration of concrete with waste limestone powder. Evaluation of the models using numerical methods showed that the majority of models give acceptable prediction with a high accuracy and trivial error rates. The 15-term regression models for predicting the slump, compressive strength and water depth were found to have the best agreement with the tested concrete specimens.

Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming

  • Alkroosh, Iyad S.;Sarker, Prabir K.
    • Computers and Concrete
    • /
    • 제24권4호
    • /
    • pp.295-302
    • /
    • 2019
  • Evolutionary algorithms based on conventional statistical methods such as regression and classification have been widely used in data mining applications. This work involves application of gene expression programming (GEP) for predicting compressive strength of fly ash geopolymer concrete, which is gaining increasing interest as an environmentally friendly alternative of Portland cement concrete. Based on 56 test results from the existing literature, a model was obtained relating the compressive strength of fly ash geopolymer concrete with the significantly influencing mix design parameters. The predictions of the model in training and validation were evaluated. The coefficient of determination ($R^2$), mean (${\mu}$) and standard deviation (${\sigma}$) were 0.89, 1.0 and 0.12 respectively, for the training set, and 0.89, 0.99 and 0.13 respectively, for the validation set. The error of prediction by the model was also evaluated and found to be very low. This indicates that the predictions of GEP model are in close agreement with the experimental results suggesting this as a promising method for compressive strength prediction of fly ash geopolymer concrete.

Prediction model for the hydration properties of concrete

  • Chu, Inyeop;Amin, Muhammad Nasir;Kim, Jin-Keun
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.377-392
    • /
    • 2013
  • This paper investigates prediction models estimating the hydration properties of concrete, such as the compressive strength, the splitting tensile strength, the elastic modulus,and the autogenous shrinkage. A prediction model is suggested on the basis of an equation that is formulated to predict the compressive strength. Based on the assumption that the apparent activation energy is a characteristic property of concrete, a prediction model for the compressive strength is applied to hydration-related properties. The hydration properties predicted by the model are compared with experimental results, and it is concluded that the prediction model properly estimates the splitting tensile strength, elastic modulus, and autogenous shrinkage as well as the compressive strength of concrete.

Enhancing prediction accuracy of concrete compressive strength using stacking ensemble machine learning

  • Yunpeng Zhao;Dimitrios Goulias;Setare Saremi
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.233-246
    • /
    • 2023
  • Accurate prediction of concrete compressive strength can minimize the need for extensive, time-consuming, and costly mixture optimization testing and analysis. This study attempts to enhance the prediction accuracy of compressive strength using stacking ensemble machine learning (ML) with feature engineering techniques. Seven alternative ML models of increasing complexity were implemented and compared, including linear regression, SVM, decision tree, multiple layer perceptron, random forest, Xgboost and Adaboost. To further improve the prediction accuracy, a ML pipeline was proposed in which the feature engineering technique was implemented, and a two-layer stacked model was developed. The k-fold cross-validation approach was employed to optimize model parameters and train the stacked model. The stacked model showed superior performance in predicting concrete compressive strength with a correlation of determination (R2) of 0.985. Feature (i.e., variable) importance was determined to demonstrate how useful the synthetic features are in prediction and provide better interpretability of the data and the model. The methodology in this study promotes a more thorough assessment of alternative ML algorithms and rather than focusing on any single ML model type for concrete compressive strength prediction.

응결시간과 겉보기 활성화 에너지를 이용한 고로슬래그 콘크리트의 압축강도 예측에 관한 연구 (Prediction of Compressive Strength Using Setting Time and Apparent Activation Energy of Blast Furnace Slag Concrete)

  • 김한솔;양현민;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.101-102
    • /
    • 2021
  • The compressive strength of concrete is greatly affected by the temperature inside the concrete at the initial age immediately after pouring. The apparent activation energy of cement and the setting time of concrete are major factors influencing the development of compressive strength of concrete. This study measured the apparent activation energy and setting time according to the change in W/B for each mixing rate of Ground Granulated Blast-Furnace Slag (GGBFS). And after calculating the compressive strength prediction model, the accuracy of the prediction model was evaluated by comparing the predicted compressive strength and the compressive strength.

  • PDF