• Title/Summary/Keyword: Conceptus

Search Result 41, Processing Time 0.02 seconds

EGF, IGF-I, VEGF and CSF2: Effects on Trophectoderm of Porcine Conceptus

  • Jeong, Wooyoung;Song, Gwonhwa
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.21-34
    • /
    • 2014
  • The majority of early embryonic mortality in pregnancy occurs during the peri-implantation stage, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation period. This maternal-conceptus interaction is especially crucial in pigs because in them non-invasive epitheliochorial placentation occurs, in which the pre-implantation phase is prolonged. During the pre-implantation period, conceptus survival and the establishment of pregnancy are known to depend on the developing conceptus receiving an adequate supply of histotroph, which contains a wide range of nutrients and growth factors. Evidence links growth factors including epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), vascular endothelial growth factor (VEGF), and colony-stimulating factor 2 (CSF2) to embryogenesis or implantation in various mammalian species; however, in the case of pig, little is known about such functions of these growth factors, especially their regulatory mechanisms at the maternal-conceptus interface. Our research group has presented evidence for promising growth factors affecting cellular activities of primary porcine trophectoderm (pTr) cells, and we have identified potential intracellular signaling pathways responsible for the activities induced by these factors. Therefore, this review focuses on promising growth factors at the maternal-conceptus interface regulating the development of the porcine conceptus and playing pivotal roles in implantation events during early pregnancy in pigs.

Conceptus-related measurements at early pregnancy in Black Bengal goat: an abattoir study

  • Talukder, Anup K.;Rahman, Mohammad A.;Hoque, Mohammad N.;Islam, Mohammad T.;Rahman, Abu N.M.A.;Das, Ziban C.
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.177-182
    • /
    • 2020
  • The present study aimed to investigate the conceptus-related changes during early pregnancy in the Black Bengal breed of goat. A total of 22 gravid genitalia of the Black Bengal goats were collected from local slaughterhouses. The crown-rump lengths (CRL) of the conceptuses were determined to estimate the gestational age (GA). The length and diameter of uterine horn and amniotic sac were measured, and volume of amniotic and allantoic fluid formed by individual conceptus were recorded. The results reveal that the CRL is positively correlated with GA of the conceptus (R2 = 0.89, p < 0.05); however, CRL was not influenced by number of conceptus. Both the left and the right uterine horn gradually increased in size with the advancement of pregnancy irrespective of conceptus number present in the horn. The size of the amniotic sac of conceptus gradually increased with the conceptus age but maintained spherical shape from 5 to 7 weeks of pregnancy. The amniotic fluid formed by individual conceptus rapidly increased from 5 weeks (3.4 ± 0.3 mL) to 7 weeks (21.0 ± 2.0 mL) and 9 weeks (111.5 ± 4.0 mL). The volume of allantoic fluid formed by individual conceptus was steadily increased until 7 weeks (60.0 ± 5.0 mL) and began to decline slowly thereafter (50.0 ± 5.0 mL at 9 weeks). Notably, there was no effect of conceptus number per pregnancy on individual amniotic and allantoic fluid volume. The cotyledons have first appeared on the allanto-chorionic surface from 4 to 5 weeks of pregnancy. The closed eye, nostril and hooves of the conceptus became visible at 7 weeks of pregnancy. The present study has shown the basic information on conceptus-related developmental changes during early pregnancy up to 9 weeks in Black Bengal goat.

Signaling Molecules at the Conceptus-Uterine Interface during Early Pregnancy in Pigs

  • Seo, Heewon;Choi, Yohan;Shim, Jangsoo;Kim, Mingoo;Ka, Hakhyun
    • Journal of Embryo Transfer
    • /
    • v.27 no.4
    • /
    • pp.211-221
    • /
    • 2012
  • The process of embryo implantation requires physical contact and physiological communication between the conceptus trophectoderm and the maternal uterine endometrium. During the peri-implantation period in pigs, the conceptus undergoes significant morphological changes and secretes estrogens, the signal for maternal recognition of pregnancy. Estrogens secreted from the conceptus act on uterine epithelia to redirect $PGF_2{\alpha}$, luteolysin, secretion from the uterine vasculature to the uterine lumen to prevent luteolysis as well as to induce expression of endometrial genes that support implantation and conceptus development. In addition, conceptuses secrete cytokines, interferons, growth factors, and proteases, and in response to these signals, the uterine endometrium produces hormones, protease inhibitors, growth factors, transport proteins, adhesion molecules, lipid molecules, and calcium regulatory molecules. Coordinated interactions of these factors derived from the conceptus and the uterus play important roles in the process of implantation in pigs. To better understand mechanism of implantation process in pigs, this review provides information on signaling molecules at the conceptus-uterine interface during early pregnancy, including recently reported data reported.

Production of Retinol-binding Protein by Caprine Conceptus during the Time Period of Maternal Recognition of Pregnancy

  • Liu, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.962-967
    • /
    • 2003
  • The purpose of the study were to characterize the proteins secreted by elongating caprine conceptus, to identify a group of low molecular weight proteins as retinol-binding protein (RBP), to identify RBP cell-specific localization in conceptus tissue, and to demonstrate that the conceptuses secreted continuously RBP during the time period maternal recognition of pregnancy. Caprine conceptuses were removed from the uterus between days 16 and 22 of pregnancy, the time period maternal recognition of pregnancy. Isolated conceptuses were cultured in a modified minimum essential medium in the presence of radiolabeled amino acids. Proteins synthesized and secreted into medium were analyzed by fluorography of two-dimensional polyacrylamide gel electrophoresis and fluorography. At least five proteins showed consistently a grouping of spots with characteristic location on two-dimensional gels. A major low molecular weight protein consisted of two major isoforms (pI 5.3-6.0) of similar molecular mass (21 kDa) was identified as RBP by using antiserum against RBP. Presence of RBP in conceptus culture medium and uterine flushings between days 16 and 22 of pregnancy were determined by immunoprecipitation and Western blotting using anti-RBP serum. In immunocytochemical study, strong immunostaining for RBP was localized in trophectoderm and endoderm of conceptus. These results clearly demonstrated that the caprine conceptus was active in protein synthesis as early as day 16 of pregnancy. Secretion of RBP by caprine conceptuses (days 16-22) coincident with the rapid transformation of the conceptus from a spherical blastocyst to a filamentous structure. Production of RBP by the elongating conceptuses may be indicative of an important role for conceptus RBP in the transport, availability and metabolism of retinol during maternal recognition of pregnancy.

Conceptus-derived cytokines interleukin-1β and interferon-γ induce the expression of acute phase protein serum amyloid A3 in endometrial epithelia at the time of conceptus implantation in pigs

  • Soohyung Lee;Inkyun Yoo;Yugyeong Cheon;Hakhyun Ka
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.441-450
    • /
    • 2023
  • Objective: Serum amyloid A3 (SAA3), an acute phase response protein, plays important roles in opsonization, antimicrobial activity, chemotactic activity, and immunomodulation, but its expression, regulation, and function at the maternal-conceptus interface in pigs are not fully understood. Therefore, we determined the expression of SAA3 in the endometrium throughout the estrous cycle and at the maternal-conceptus interface during pregnancy. Methods: Endometrial tissues from pigs at various stages of the estrous cycle and pregnancy and with conceptuses derived from somatic cell nuclear transfer (SCNT), conceptus tissues during early pregnancy, and chorioallantoic tissues during mid- to late pregnancy were obtained and the expression of SAA3 was analyzed. The effects of the steroid hormones, interleukin-1β (IL1B), and interferon-γ (IFNG) on the expression of SAA3 were determined in endometrial explant cultures. Results: SAA3 was expressed in the endometrium during the estrous cycle and pregnancy, with the highest level on day 12 of pregnancy. The expression of SAA3 in the endometrium was significantly higher on day 12 of pregnancy than during the estrous cycle. Early-stage conceptuses and chorioallantoic tissues during mid to late pregnancy also expressed SAA3. The expression of SAA3 was primarily localized to luminal epithelial cells in the endometrium. In endometrial explant cultures, the expression of SAA3 was induced by increasing doses of IL1B and IFNG. Furthermore, the expression of SAA3 decreased significantly in the endometria of pigs carrying conceptuses derived from SCNT on day 12 of pregnancy. Conclusion: These results suggest that the expression of SAA3 in the endometrium during the implantation period increases in response to conceptus-derived IL1B and IFNG. The failure of those appropriate interactions between the implanting conceptus and the endometrium leads to dysregulation of endometrial SAA3 expression, which could result in pregnancy failure. In addition, SAA3 could be a specific endometrial epithelial marker for conceptus implantation in pigs.

Maternal-Conceptus Interactions: Mediators Regulating the Implantation Process in Pigs

  • Choi, Yohan;Seo, Heewon;Yoo, Inkyu;Han, Jisoo;Jang, Hwanhee;Kim, Minjeong;Ka, Hakhyun
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.9-19
    • /
    • 2014
  • For successful embryo implantation, the communication of the maternal endometrium with the conceptus trophectoderm is required essentially. In pigs, conceptuses undergo morphological change in length to enlarge the physical contact area with the maternal endometrium and secrete estrogen to induce the maternal recognition of pregnancy during the peri-implantation period. Conceptus-derived estrogen prevents luteolysis by conversion in direction of $PGF_{2{\alpha}}$ secretion from the uterine vasculature to the uterine lumen as well as it affects on expression of the uterine endometrial genes. In addition to estrogen, conceptuses release various signaling molecules, including cytokines, growth factors, and proteases, and, in response to these signaling molecules, the maternal uterine endometrium also synthesizes many signaling molecules, including hormones, cytokines, growth factors, lipid molecules, and utilizes ions such as calcium ion by calcium regulatory molecules. These reciprocal interactions of the conceptus trophectoderm with the maternal uterine endometrium make development and successful implantation of embryos possible. Thus, signaling molecules at the maternal-conceptus interface may play an important role in the implantation process. This review summarized syntheses and functions of signaling molecules at the maternal-conceptus interface to further understand mechanisms of the embryo implantation process in pigs.

Unique epithelial expression of S100A calcium binding protein A7A in the endometrium at conceptus implantation in pigs

  • Lee, Soohyung;Jang, Hwanhee;Yoo, Inkyu;Han, Jisoo;Jung, Wonchul;Ka, Hakhyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1355-1362
    • /
    • 2019
  • Objective: S100A7A, a member of the S100 protein family, is involved in various biological processes, including innate immunity, antimicrobial function, and epithelial tumorigenesis. However, the expression and function of S100A7A in the endometrium during the estrous cycle and pregnancy are not well understood in pigs. Therefore, this study determined the expression and regulation of S100A7A at the maternal-conceptus interface in pigs. Methods: We obtained endometrial tissues from pigs throughout the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during midto late pregnancy and analyzed the expression of S100A7A in these tissues. We also determined the effects of steroid hormones, estradiol-$17{\beta}$ ($E_2$) and progesterone, and interleukin-$1{\beta}$ (IL1B) on S100A7A expression in endometrial tissues. Results: We found that S100A7A was expressed in the endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-dependent manner and was localized to endometrial luminal epithelial (LE) and superficial glandular epithelial cells with strong intensity in LE cells on day 12 of pregnancy. Early stage conceptuses and chorioallantoic tissues from day 30 to term pregnancy also expressed S100A7A. The expression of S100A7A was increased by $E_2$ and IL1B in endometrial tissues. Conclusion: S100A7A was expressed at the maternal-conceptus interface at the initiation of implantation in response to conceptus-derived estrogen and IL1B and could be a unique endometrial epithelial marker for conceptus implantation in pigs. These findings provide an important insight into the understanding of conceptus-endometrial interactions for the successful establishment of pregnancy in pigs.

Inhibitors of apoptosis: expression and regulation in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs

  • Yoo, Inkyu;Jung, Wonchul;Lee, Soohyung;Cheon, Yugyeong;Ka, Hakhyun
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.533-543
    • /
    • 2022
  • Objective: Caspase-mediated apoptosis plays a crucial role in the regulation of endometrial and placental function in females. Caspase activity is tightly controlled by members of the inhibitors of apoptosis proteins (IAPs) family. However, the expression and regulation of IAPs at the maternal-conceptus interface has not been studied in pigs. Therefore, we determined the expression of IAP family members baculovirus IAP repeat-containing 1 (BIRC1) to BIRC6 at the maternal-conceptus interface in pigs. Methods: We obtained endometrial tissues from pigs at various stages of the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during mid- to late pregnancy and analyzed the expression of IAPs. Furthermore, we determined the effects of the steroid hormones estradiol-17β (E2) and progesterone on the expression of IAPs in endometrial explant tissue cultures. Results: During the estrous cycle, BIRC2 and BIRC5 expression varied cyclically, and during pregnancy, endometrial BIRC1, BIRC2, BIRC3, BIRC4, and BIRC5 expression varied in a stage-specific manner. Conceptus and chorioallantoic tissues also expressed IAPs during pregnancy. The BIRC2 and BIR3 mRNAs were localized to luminal epithelial cells, and BIRC4 proteins to glandular epithelial cells in the endometrium. Exposure of endometrial tissues to E2 increased the expression of BIRC6, while progesterone increased the expression of BIRC1, BIRC4, and BIRC6 in a dose-dependent manner. Conclusion: These results indicated that IAPs were expressed in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in a stage-specific manner. In addition, steroid hormones were found to be responsible for the expression of some IAPs in pigs. Together, the results suggested that IAPs may play important roles in endometrial and placental functions by regulating caspase action and apoptosis at the maternal-conceptus interface.

The Role of the Insulin-like Growth Factor System during the Periimplantation Period (착상기 Insulin-like Growth Factor System의 역할)

  • 이철영
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

Roles of Conceptus Secretory Proteins in Establishment and Maintenance of Pregnancy in Ruminants

  • Bazer, Fuller W.;Song, Gwon-Hwa;Thatcher, William W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2012
  • Reproduction in ruminant species is a highly complex biological process requiring a dialogue between the developing conceptus (embryo-fetus and associated placental membranes) and maternal uterus which must be established during the peri-implantation period for pregnancy recognition signaling and regulation of gene expression by uterine epithelial and stromal cells. The uterus provide a microenvironment in which molecules secreted by uterine epithelia and transported into the uterine lumen represent histotroph, also known as the secretome, that are required for growth and development of the conceptus and receptivity of the uterus to implantation by the elongating conceptus. Pregnancy recognition signaling as related to sustaining the functional lifespan of the corpora lutea, is required to sustain the functional life-span of corpora lutea for production of progesterone which is essential for uterine functions supportive of implantation and placentation required for successful outcomes of pregnancy. It is within the peri-implantation period that most embryonic deaths occur in ruminants due to deficiencies attributed to uterine functions or failure of the conceptus to develop appropriately, signal pregnancy recognition and/or undergo implantation and placentation. The endocrine status of the pregnant ruminant and her nutritional status are critical for successful establishment and maintenance of pregnancy. The challenge is to understand the complexity of key mechanisms that are characteristic of successful reproduction in humans and animals and to use that knowledge to enhance fertility and reproductive health of ruminant species in livestock enterprises.