• Title/Summary/Keyword: Conceptual Design Process

Search Result 519, Processing Time 0.03 seconds

Conceptual Design of 100 MW Turbogenerator (가스터빈 구동 공냉식 100 MW 발전기의 개념설계)

  • Park, Doh-Young;Hwang, Don-Ha;Ha, Kyung-Duck;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.88-90
    • /
    • 1998
  • The conceptual design of turbine-driven air-cooled 100 MW generator is presented. The generators rating is 100 MW 3-phase 2pole 13.8 kV 0.85 pf 60 Hz. The conceptual design is described by the process of designing the stator, rotor, and obtaining some of equivalent circuit parameters. The design process starts from the output coefficient G, and utilizes the classical design equations with parameters used in the modern designs. The slot dimensions of the stator and rotor are obtained with their respective winding dimensions.

  • PDF

Design Process of Robotic Cell and Layout Design Tool (로봇 셀 설계절차와 레이아웃 작업 지원 도구)

  • Guk, Geum-Hwan;Park, Jun-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1379-1389
    • /
    • 2000
  • In this study, a design process of robotic cell is presented. This paper focuses only on the automation of workpiece handling with robot. The presented design process enables us to analyze effectiv ely the original production system and to redesign it as an optimum production system with robots. An original production system is analyzed with respect to its economical and technological requirements for automation. If automation of the given production system is feasible, the conceptual design for automation is firstly derived. Next, the detail design is derived for the optimum conceptual design. Finally, an optimum system solution is determined after the economical and technical evaluation of all the derived detail designs. The all specifications of each element of the redesigned production system and its layout are determined at the detail design phase. This paper shows a low cost supporting tool for layout design of robotic cell with SCARA type robots.

Pre-conceptual Design of the Main Components for the NHDD Program (수소생산용 원자로에서 주요기기의 예비개념설계)

  • Song, Kee-Nam;Lee, S.B.;Kim, Y.W.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.296-299
    • /
    • 2007
  • KAERI is in the process of carrying out the Nuclear Hydrogen Development and Demonstration (NHDD) Program. The indirect cycle gas cooled reactors that produce heat at temperatures in the order of $950^{\circ}C$ are being considered in the NHDD program. For the indirect gas cooled reactors, the intermediate hear exchanger (IHX) and hot gas duct (HGD) are the main components. For the NHDD program we are in the process of establishing a conceptual design of the IHX and HGD. The pre-conceptual design activities in this study dealt with a preliminary design of the IHX and the HGD including strength and thermal expansion evaluation of the main components.

  • PDF

Ontology-based Conceptual Model Building Framework for Discrete Event Simulation (온톨로지를 이용한 이산 사건 시뮬레이션의 개념적 모델 구축 지원에 관한 연구)

  • Park, Jisung;Jeong, Sunghwan;Sohn, Mye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-40
    • /
    • 2014
  • Conceptual Modeling is the process of abstracting a model from a real or proposed system. It is probably the most important aspect of a simulation study. Relate works show that the elementary developers devoted little time to understanding how the systems actually worked, namely they didn't build appropriate conceptual model. Thus, the result of simulation is inconsistent because it depends on developer's competence. Although many researchers suggested various techniques enabling developer to build conceptual model, there were several limitations. In this study, to overcome the limitations of existing techniques, we proposed COMBINE-DES (COnceptual Model BuildINg framEwork using ontology for Discrete Event Simulation). The COM-BINE-DES supports expediting the conceptual modeling with Solution ontology generated by Domain ontology and Simulation ontology. Moreover, it provides consistent simulation result regardless of repeated modeling.

The Conceptual Design of Semi-submersible Type Mobile Harbor Using Axiomatic Design Principles (공리설계를 이용한 반잠수식 모바일하버의 개념설계)

  • Lee, Joo-Hee;Yoon, Seong-Jin;Chung, Hyun;Lee, Phill-Seung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.189-203
    • /
    • 2010
  • The axiomatic design principles are applied to the conceptual design of semi-submersible type mobile harbor (B1). The process of how the design of mobile harbor is elaborated, evaluated and improved from the very beginning is presented in this paper. The concept of mobile harbor is a functional harbor, which can move to a container ship anchoring out of ports in the deep water to load/unload containers on sea and transfer them to their destination ports. This floating system will innovate the maritime transport and distribution since it will greatly enhance the accessibility of super-sized container ships to existing harbors and harbors without enough infrastructures. Designing a mobile system which can perform the functions of traditional harbors on the floating system requires innovative ideas as well as rigorous validations of each sub systems. In order to enhance the chance of design success, we try to satisfy the design axioms in early stage of conceptual design. We use the zigzagging process for defining Functional Requirements (FR)-Design Parameters (DP) hierarchy due to the complexity of the system. In other words, we decomposed the complexity of the design by FR-DP hierarchy and reduced coupled design logically and systematically. This paper shows applicability of the axiomatic design principles to the field of ocean systems engineering.

A Study on the Integration of Systems Engineering Process and Systems Safety Process in the Conceptual Design Stage to Improve Systems Safety (시스템 개념설계 단계에서 안전도 향상을 위한 시스템공학 및 시스템안전 프로세스의 통합에 관한 연구)

  • Kim, Young-Min;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • Recently, we have witnessed the definitely negative impacts of large-scale accidents happened in such areas as atomic power plants and high-speed train systems, which result in increased fear for the potential danger. The problems appear to arise due to the deficiency in the design of large-scale complex systems. One of the causes can be attributed to the design process that does not fully reflect the safety requirements in the early stage of the system development because of the substantially increased complexity. In this paper, to enhance the systems safety an integrated process is studied, which considers simultaneously both the system design process and system safety process from the beginning of the system development. In the conceptual system design phase an integrated process model is constructed by analyzing the activities of both the system design and safety processes. As a case study example, an inner city train system is described with the application of the developed process. The computer simulation of the example case is followed by the result discussed. The results obtained in the paper are expected to be the basis for the future study where a detailed process and its associated activities can be developed.

A BIM-based model for constructability assessment of conceptual design

  • Fadoul, Abdelaziz;Tizani, Walid;Koch, Christian
    • Advances in Computational Design
    • /
    • v.3 no.4
    • /
    • pp.367-384
    • /
    • 2018
  • The consideration of constructability issues at the design stage can lead to improved construction performance with smooth project delivery and savings in time and money. Empirical studies demonstrate the value obtained by integrating construction knowledge with the building design process, and its benefits for owners, contractors and designers. However, it is still a challenge to implement the concept into current design practice. There is a need for a decision support tool to aid designers in reviewing their design constructability, deploying current technological tools, such as BIM. Such tools are beneficial at the conceptual design stage when there is a room to improve the design significantly with less incurred cost. This research investigates how current process- and object-oriented models can be used to assess design constructability. It proposes a BIM-based model using embedded information within the design environment to conduct the assessment. The modelling framework is demonstrated in four key parts; namely, the conceptual design model, the constructability assessment model, the assessment process model and the decision-making phase. Each is associated with a set of components and functions that contribute towards the targeted constructability assessment outcomes. The proposed framework is the first to combine a numerical assessment system and a rule-based system, allowing for both quantitative and qualitative approaches. The modelling framework and its implementation through a prototype are described in this paper. It is believed that this framework is the first to enable users to transfer their construction knowledge and experience directly into a design platform linked to BIM models. The assessment criteria can be customised by the users who can reflect their own constructability preferences into various specialised profiles that can be added to the constructability assessment model. It also allows for the integration of the assessment process with the design phase, facilitating the optimisation of constructability performance from the early design stage.

Aircraft derivative design optimization considering global sensitivity and uncertainty of analysis models

  • Park, Hyeong-Uk;Chung, Joon;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.268-283
    • /
    • 2016
  • Aircraft manufacturing companies have to consider multiple derivatives to satisfy various market requirements. They modify or extend an existing aircraft to meet new market demands while keeping the development time and cost to a minimum. Many researchers have studied the derivative design process, but these research efforts consider baseline and derivative designs together, while using the whole set of design variables. Therefore, an efficient process that can reduce cost and time for aircraft derivative design is needed. In this research, a more efficient design process is proposed which obtains global changes from local changes in aircraft design in order to develop aircraft derivatives efficiently. Sensitivity analysis was introduced to remove unnecessary design variables that have a low impact on the objective function. This prevented wasting computational effort and time on low priority variables for design requirements and objectives. Additionally, uncertainty from the fidelity of analysis tools was considered in design optimization to increase the probability of optimization results. The Reliability Based Design Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were proposed to handle the uncertainty in aircraft conceptual design optimization. In this paper, Collaborative Optimization (CO) based framework with RBDO and PBDO was implemented to consider uncertainty. The proposed method was applied for civil jet aircraft derivative design that increases cruise range and the number of passengers. The proposed process provided deterministic design optimization, RBDO, and PBDO results for given requirements.

Generation of Design Candidates and Ship Conceptual Design Assistance by using Case-Based Reasoning (사례기반 추론 기법을 이용한 설계후보 생성 및 선박 개념설계 지원 시스템)

  • Kyung-Ho Lee;Dong-Kon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.109-117
    • /
    • 1998
  • In a preliminary design available information is limited, so it makes attractive to rely on the design cases of existing ships to design new ships. In this paper a prototype of the case-based conceptual design system of a ship is developed to support systematically the design process. This system not only generates design candidates through a case indexing, but also determines the priorities of the candidates by using nearest neighbor matching algorithm. The final solution is presented through adaptation process. The validation of the system was examined and verified by applying to conceptual ship design stage.

  • PDF

Conceptual Design of a Beam Splitter for the Laser Marker Using Axiomatic Design and Triz (TRIZ를 도입한 공리적 설계방법에 의한 레이저 마커의 빔 분해기 개념설계)

  • 신광섭;박경진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.166-173
    • /
    • 2004
  • Axiomatic Design has been developed as a general design framework during past two decades and TRIZ has been developed for a design tool over 50 years. Axiomatic design is quite excellent in that the design should be decoupled. When a design matrix is established, the characteristics of the design are identified concerning the coupling properties. If the design is coupled, a decoupling process should be found. However, axiomatic design does not specifically indicate how to decouple. In this paper, a design method is developed to use TRIZ in the decoupling process. The decoupling ideas are extracted from the substance field analysis and various methods in TRIZ. The mettled is applied applied to the conceptual design of a beam splitter for the laser marker and the results are analyzed.