• Title/Summary/Keyword: Conceptual Design Process

Search Result 520, Processing Time 0.032 seconds

Concept Optimization for Mechanical Product Using Genetic Algorithm

  • Huang Hong Zhong;Bo Rui Feng;Fan Xiang Feng
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1072-1079
    • /
    • 2005
  • Conceptual design is the first step in the overall process of product design. Its intrinsic uncertainty, imprecision, and lack of information lead to the fact that current conceptual design activities in engineering have not been computerized and very few CAD systems are available to support conceptual design. In most of the current intelligent design systems, approach of principle synthesis, such as morphology matrix, bond graphic, or design catalogues, is usually adopted to deal with the concept generation, in which optional concepts are generally combined and enumerated through function analysis. However, as a large number of concepts are generated, it is difficult to evaluate and optimize these design candidates using regular algorithm. It is necessary to develop a new approach or a tool to solve the concept generation. Generally speaking, concept generation is a problem of concept synthesis. In substance, this process of developing design candidate is a combinatorial optimization process, viz., the process of concept generation can be regarded as a solution for a state-place composed of multi-concepts. In this paper, genetic algorithm is utilized as a feasible tool to solve the problem of combinatorial optimization in concept generation, in which the encoding method of morphology matrix based on function analysis is applied, and a sequence of optimal concepts are generated through the search and iterative process which is controlled by genetic operators, including selection, crossover, mutation, and reproduction in GA. Several crucial problems on GA are discussed in this paper, such as the calculation of fitness value and the criteria for heredity termination, which have a heavy effect on selection of better concepts. The feasibility and intellectualization of the proposed approach are demonstrated with an engineering case. In this work concept generation is implemented using GA, which can facilitate not only generating several better concepts, but also selecting the best concept. Thus optimal concepts can be conveniently developed and design efficiency can be greatly improved.

The Estimations of A Conceptual Time Distribution of Rainfall and Design Flood (강우의 개념적 시간분포와 설계홍수량 산정에 관한 연구)

  • Lee Byung Woon;Jang Dae Won;Kim Hung Soo;Seoh Byung Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.937-942
    • /
    • 2005
  • It is necessary to estimate the runoff hydrograph and peak flood discharge using law of probability for synthetic flood control policy and design of hydraulic structures. Rainfall analysis is needed in the process of peak flood discharge estimation and the time distribution of a design rainfall is a very important process in the analysis. In this study, we estimate design flood for a small urban basin and a rural basin of medium scale which have different travel times. The Huff method is widely used in Korea for the time distribution of design rainfall to estimate design flood. So, we use Huff method and a conceptual method which is suggested in this study for the comparative purpose. The 100-year frequency rainfall is used to estimate design flood for each basin and the design flood is compared with the existing design flood. As the result, the design flood is overestimated $14.6m^3/sec$ by Huff method and is underestimated $70.9m^3/sec$ by a conceptual method for the rural basin. For the small urban basin, the design flood is excessively overestimated $294.65m^3/sec$ by Huff method and is overestimated $173m^3/sec$ by a conceptual method. The reason of excessive overestimation by Huff method in the small urban basin is that the increased rate of rainfall intensity according to the decrease of duration is large and the duration exceeds the time of concentration when the increased rainfall intensity is concentrated in a quartile. Therefore, we suggested a conceptual method for the time distribution of design rainfall by considering the rainless period and duration. Especially, the conceptual method might be useful for the small urban basin with short concentration time which the design flood is overestimated by Huff method.

  • PDF

A Research on Space Identity Developing model by Design Process (디자인프로세스를 활용한 공간 아이덴티티 개발 모델에 관한 연구)

  • LEE, Kyung ah
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.563-569
    • /
    • 2018
  • This paper deals with a space identity development model using design process. The main contents of the study are as follows. First, this study has defined the design process concept and studied various design process model. Second, the meaning of space design process was studied and concept definition was made. Third, it developed a conceptual model of space design process for developing space identity. Finally, a conceptual model that can define space identity by applying design process to complex and various types of space is studied and presented. This study applied positivist research methods such as literature review and various theoretical review to study design process and space identity. The research on space design process adopts indirect research method based on previous research data.

Design space exploration in aircraft conceptual design phase based on system-of-systems simulation

  • Tian, Yifeng;Liu, Hu;Huang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.624-635
    • /
    • 2015
  • Design space exploration has been much neglected in aircraft conceptual design phase, which often leads to a waste of time and cost in design, manufacture and operation process. It is necessary to explore design space based on operational system-of-systems (SoS) simulation during the early phase for a competitive design. This paper proposes a methodology to analyze aircraft performance parameters in four steps: combination of parameters, object analysis, operational simulation, and key-parameters analysis. Meanwhile, the design space of an unmanned aerial vehicle applied in earthquake search and rescue SoS is explored based on this methodology. The results show that applying SoS simulation into design phase has important reference value for designers on aircraft conceptual design.

Re-Design of Wing Flap for Very Light Jet Aircraft Incorporating Airworthiness Certification (항공안전인증을 고려한 소형제트항공기 플랩 재설계)

  • Yoon, Jung-Won;Lee, Hyo-Jin;Lee, Jae-Woo;Kim, Sang-Ho;Byun, Yung-Hwan;Kim, Im-Gun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, a conceptual design process for Very Light Jet aircraft has been proposed incorporating aircraft safety certification. During the proposed design process, satisfaction of the airworthiness certification for an intermediate resulting aircraft configuration is evaluated and then redesigns are carried out if necessary and until the designed aircraft configuration satisfies the airworthiness requirements. Certification database has been developed using FAR 23, AC 23, KAS 23, and CS 23 as the airworthiness certification. Based on the developed certification database Design Certifcation Related Table has been produced to use the airworthiness requirements as design constraints in the propsed design process. Using Quality Function Deployment the design variables for a redesign are carefully selected and a design optimization is performed. To demonstrate the feasibility and effectiveness of rapid aircraft conceptual design using the proposed approach, a Very Light Jet design optimization including a redesign of wing flap has been performed and the design results have been presented.

Conceptual Design of the KAFASAT Using System Engineering Tools (시스템공학 도구를 이용한 KAFASAT 개념설계)

  • Lee, Kihun;Kim, Jongbum;Jung, Myungjin;Ohm, Yunjong;Cho, Donghyurn;Kwon, Kybeom
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • KAFASAT is a CubeSat which has a high level mission of testing the possibility of establishing the LEO satellite constellation providing the role of communication nodes and quasi-realtime image recognition of battlefield in accordance with the aspect of future-war-environment. The high level mission is developed using the Pugh selection method, which is one of system engineering tools. In order to accomplish the high level mission objectives and deduce engineering level requirements, system engineering tools such as Analytic Hierarchy Process and Quality Function Deployment are used. The subsystem synthesis in the context of system engineering process is done using a developed integrated design environment. The paper also includes the conceptual design results of the KAFASAT, which can be used as a baseline for upcoming preliminary design.

Adaptable conceptual aircraft design model

  • Fioriti, Marco
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.43-67
    • /
    • 2014
  • This paper presents a new conceptual design model ACAD (Adaptable Conceptual Aircraft Design), which differs from the other models due to its considerable adaptability to the different classes of aircraft. Another significant feature is the simplicity of the process which leads to the preliminary design outputs and also allowing a substantial autonomy in design choices. The model performs the aircraft design in terms of total weight, weight of aircraft subsystems, airplane and engine performances, and basic aircraft configuration layout. Optimization processes were implemented to calculate the wing aspect ratio and to perform the design requirements fulfillment. In order to evaluate the model outcomes, different test cases are presented: a STOL ultralight airplane, a new commuter with open-rotor engines and a last generation fighter.

Development of Conceptual Design Program for Satellite Communication System in LEO (저궤도 소형위성 통신시스템 개념설계 프로그램의 개발)

  • Ko, Sung-Hwan;Hwang, Ki-Lyoung;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.134-141
    • /
    • 2004
  • This paper addresses development of the conceptual design program of satellite communication system. A database for more than 200 small satellites of LEO which are between 10kg and 200kg was constructed to conduct a sequential process of conceptual design. General parameters based on the database were derived to be able to use for initial design of satellite communication system. The general conceptual design process developed and programed in this work is applicable to micro-class small satellites without regard to mission types. This conceptual design algorithm is consisted of five sequential steps, in which various parameters are defined every phase. These parameters are utilized for conceptual design through database analysis. The validity of an entire design algorithm has been demonstrated via program simulation.

A Study on the Conceptual Design of Integrated Battle Experimentation System for Future Force Development (미래 전력발전을 위한 종합전투실험체계 개념설계 연구)

  • Oh, Seung-Hwan;Hong, Yoon-Gee
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.3
    • /
    • pp.57-68
    • /
    • 2010
  • This Study proposes that a SoS(System of Systems) Conceptual Design Model which is developed for the SoS establishment, requirement and decision, utilizing SoS engineering and architecture methodology, and the Model performed with the Process Transition Map using subject matter expert survey. Establishing an Integrated Battle Experimentation System(IBES) for the future force development, the process product of IBES was conceptually designed using a SoS Conceptual Design Model.

Conceptual Design of a Ducted Fan for Helicopter Anti-Torque System

  • Hwang, Chang-Jeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.89-96
    • /
    • 2005
  • Ducted fans have advantages in noise as well as operational safety aspects compared to conventional tail rotors and are used as an anti-torque system for various classes of helicopters. The final goal of this study is to develop a ducted fan anti-torque system which can replace conventional tail rotors of existing helicopters to achieve safety enhancement and low noise level. In this paper, a conceptual design process and the results are described. Initially, the design requirement and the design parameter characteristics are analysed, and then initial sizing and configuration design are performed. There are several configuration changes due to specific technical reasons in each case. Finally, the required power and the pitch link load are predicted as an initial estimation. The conceptual design technique for the ducted fan in this study can be easily applied to the design of other ducted fans such as the lift fan for unmanned aerial vehicle.