• Title/Summary/Keyword: Conceptual Configuration Design

Search Result 130, Processing Time 0.028 seconds

Mechanism Design Using a Mechanism Configuration Method (메커니즘 합성을 통한 기계설계)

  • Lee, Jang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1613-1618
    • /
    • 2011
  • Analysis method for mechanism has been fully developed and relatively easy work compared to mechanism synthesis. Developing or creating a new mechanism for a given task is a creative job. In this case, a few theories are developed such as type synthesis. However, these methods are not sufficient for mechanism designers to sufficientely take into account alternative mechanism models during the initial phase of the mechanism design process. This paper presents the configuration design of mechanisms using graphical representation in the conceptual design stage. In this stage of kinematic synthesis, one needs to select mechanisms and configure appropriately to realize the desired motion of a machine. Graphical representation of mechanisms is proposed in this paper to help a designer to be highly creative and efficient in the initial design process. It is possible to easily design and analyze the mechanism of a machine by using this method.

Form Follows Intent: Configuration of a Dragon Spirit into a Three-dimensional Dress Form

  • Cho Kyeong-Sook
    • The International Journal of Costume Culture
    • /
    • v.8 no.2
    • /
    • pp.105-110
    • /
    • 2005
  • This paper documents a dress design process to demonstrate the theory that form follows intent. It includes a statement of the design context as a venue where the conceptual intent originated. The dragon icon became the subject, form, and content of the design project. The author's designerly endeavor is discussed with focus on reconfiguration of formal characteristics shown in the visual reference of the eastern dragon symbol into a dress design with the consideration of utilitarian, expressive, and symbolic issues. Throughout the process, the author was an active agent who created formal characteristics, manifested a thought into an object, and imbued a meaning to the dress, demonstrating the notion that form follows intent.

  • PDF

A simplified algorithm for conceptual estimation of the material quantities of rubble-mound breakwaters

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.111-129
    • /
    • 2020
  • A simplified algorithm is proposed for fast estimation of the material quantities required for the construction of rubble-mound breakwaters. The proposed algorithm is able to employ only the data available at feasibility study phase such as the maximum draught of the design ship selected to transport the cargos to the harbor despite, because at the feasibility phase, information for the planned harbor is likely to be very limited. A linear-constant waterdepth model together with a proposed section configuration for the breakwaters, which is customary for harbors, is considered to calculate the quantity of materials. The numerical simulation of the wave characteristics has been verified using the recorded wave data collected by a buoy installed near the Neka harbor in Caspian Sea waters. A case study has been also applied to four harbors to validate the proposed algorithm. The estimated weights using the proposed linear-constant and multi-linear waterdepth models were compared using the bathymetry maps and layouts of these harbors. A computer program, written in QBasic language, has been developed to simulate the wave characteristics and to estimate the material quantities needed to construct a rubble-mound breakwater. The obtained results show that taking into account the acceptable accuracies normally applied to the feasibility study and conceptual design phases, the proposed algorithm is sufficiently accurate and highly effective for the conceptual estimation of materials' quantities of breakwaters in the feasibility study phase of harbor projects.

A Study on the Conceptual Bridge Design based on the Ergonomic Background (인간공학적 선교설계에 관한 기초연구)

  • 하원재;나송진;김상수;이형기;정재용
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • A correctly designed bridge offers improved operational safety in terms of increased vigilance, flexibility of operation, precision of control and operator's situational awareness. According1y to design human centered bridge, the consideration shall be given to the man-machine interface, location and interrelation of workstation, configuration of console, windows. field of vision and bridge working environment. The state-of-the-art suits for one-man operation by integration of conning information and central information presentation. Further, it is desirable to enable two man ship operation for emergency operations, training purposes and redundancy. In this point of view, this thesis would like to design a conceptual bridge.

  • PDF

Study on Weight Reduction of Rotorcraft Power Transmission System through Trade-off Design on Gearbox System Configuration (기어박스 시스템 형상 상쇄설계를 통한 로터크래프트 동력전달장치 경량화 연구)

  • Kim, Suchul;Lee, Geun-ho;Park, Young-jun;Cho, Seung-je;Yang, Gyebyung;Park, Kyungsu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.8-14
    • /
    • 2017
  • Gearboxes for power transmission of a rotorcraft transfer power generated by an engine to the fan and the pusher for up, down and forward flight. The gearboxes are divided into the main gearbox and the sub-gearbox. The main goal of the gearbox design is to design the weight as light as possible within a range that satisfies all given requirements (transmission power, mounting space, etc.). In particular, the initial conceptual design is very important to reduce the weight of the gearbox, since the weight can vary greatly depending on the system configuration, even if it has the same function. In this study, various conceptual designs of the gearbox according to the installation position of the engine were presented. Also, the element parts such as gears and bearings in each concept design were designed by sizing for their life, and the estimated weights of the conceptual system configuration were compared.

Conceptual Data Modeling on the KRR-1&2 Decommissioning Database

  • Park, Hee-Seoung;Park, Seung-Kook;Lee, Kune-Woo;Park, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.610-618
    • /
    • 2002
  • A study of the conceptual data modeling to realize the decommissioning database on the HRR-1&2 was carried out. In this study, the current state of the abroad decommissioning database was investigated to make a reference of the database. A scope of the construction of decommissioning database has been set up based on user requirements. Then, a theory of the database construction was established and a scheme on the decommissioning information was classified . The facility information, work information, radioactive waste information, and radiological information dealing with the decommissioning database were extracted through interviews with an expert group and also decided upon the system configuration of the decommissioning database. A code which is composed of 17 bit was produced considering the construction, scheme and information. The results of the conceptual data modeling and the classification scheme will be used as basic data to create a prototype design of the decommissioning database.

Application of Concurrent Engineering for Conceptual design of a Future Main Battle Tank (차세대 주력전차의 개념설계를 위한 동시공학의 적용)

  • 김진우;소한균
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.38-60
    • /
    • 1999
  • The main objective of this study is systemization of the technique of ROC quantification and optimization of baseline design by applying CE principle to the acquisition process of a weapon system. QFD and TOA techniques can be employed to a good working example of the conceptual design of a future main battle tank. In this paper, Product Planning Phase, the first phase of four QFD phases, is deployed in terms of eight steps including customer requirements and final product control characteristics. TOA is carried out considering only combat weight. In order to perform combat weight analysis and performance TOA, Preliminary Configuration Synthesis Methodology is used. Preliminary Configuration Synthesis Methodology employs the method of least squares and described linear equations of weight interrelation equation for each component of tank. As a result of QFD based upon the ROC, it was cleared that armor piercing power, main armament, type of ammunition, cruising range, combat weight, armor protection, power loading, threat detection and cost are primary factors influencing design and that combat weight is the most dominant one. The results of TOA based on the combat weight constraint show that 5100 lb reduction was required to satisfy the ROC. The baseline design of a future main battle tank is illustrated with assumption that all phases of QFD are employed to development and production process of subsystems, components, and parts of main battle tank. TOA is applied in iterative process between initial baseline design and ROC. The detailed design of each component is illustrated for a future main battle tank.

  • PDF

A parameter sweep approach for first-cut design of 5 MW Ship propulsion motor

  • Bong, Uijong;An, Soobin;Im, Chaemin;Kim, Jaemin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents a conceptual design approach of air-cored synchronous machine with high temperature superconductor (HTS) field winding. With a given configuration of a target machine, boundary conditions are set in the cylindrical coordinate system and analytic field calculation is performed by solving a governing equation. To set proper boundary conditions, current distributions of the field winding and the armature winding are expressed by the Fourier expansion. Based on analytic magnetic field calculation results, key machine parameters are calculated: 1) inductance, 2) critical current of field winding, 3) weight, 4) HTS conductor consumption, and 5) efficiency. To investigate all potential design options, 6 sweeping parameters are determined to characterize the geometry of the machine and the parameter calculation process is performed for each design options. Among design options satisfying constraints including >80 % critical current margin and >95 % efficiency, in this paper, a first-cut design was selected in terms of overall machine weight and HTS conductor consumption to obtain a lightweight and economical design. The goal is to design a 5-MW machine by referring to the same capacity machine that was previously constructed by another group. Our design output is compared with finite element method (FEM) simulation to validate our design approach.

Development of a Small Centrifugal Fan with CFD (수치해석에 의한 소형 원심팬 개발)

  • Chee, Seon-Koo;Park, Sung-Kwan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.11-16
    • /
    • 2001
  • It is not easy to apply a small-sized centrifugal fan to the duct used for the thermal management of home electronic appliances due to complex design parameters of its blades and scroll. The main objective of this study was to develop the systematic process to design an optimal centrifugal fan based on the 3-dimensional configuration of blades obtained from the conceptual design program self-developed with the given design constraints such as the flow rate, the total pressure loss, the size of fan, and the number of rotation. The design process to find an optimal centrifugal fan for refrigerator was technologically linked in many ways. The complex grid generation system of the fan model included scroll was adopted for the numerical simulation. The FVM CFD code, FLUENT, was used to investigate the three dimensional flow pattern at the coordinate system of rotating frame and to check the optimal performance of the fan. By using this design process, a selected centrifugal fan was designed, numerically simulated, manufactured and experimentally tested in the wind tunnel. The performance curve of fan manufactured by NC process was compared with numerically obtained characteristic curve. The developed design method was proved into being excellent because these two curves were well matched.

  • PDF

Development of Conceptual Design Methodology and Initial Sizing for Tip-Jet Gyroplane (Tip-jet gyroplane 개념설계 기법 개발 및 사이징)

  • Lee, Donguk;Lim, Daejin;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.452-463
    • /
    • 2018
  • Tip-jet gyroplane is a type of compound helicopter that employs the tip-jet system to rotate the rotor by a reaction force from the gas jetted at the rotor tips in hovering. In forward flight, tip-jet gyroplane converts into a form of a gyroplane. Therefore, it is necessary to develop a new conceptual design method to consider three flight modes: tip-jet mode, gyroplane mode, and transient mode. This study developed the numerical code of conceptual design methodology that can consider three flight modes. The developed code was validated against the available experiment data. Based on the developed code, initial sizing of tip-jet gyroplane was performed for two mission profiles including high speed forward flight of 150knots with a mission range of 300km or 400km. Subsequently, the configuration and performance of the 3,000lb tip-jet gyroplane were analyzed.