• Title/Summary/Keyword: Concept Modeling

Search Result 1,096, Processing Time 0.026 seconds

Applying Fishing-gear Simulation Software to Better Estimate Fished Space as Fishing Effort

  • Lee, Ji-Hoon;Lee, Chun-Woo;Choe, Moo-Youl;Lee, Gun-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.138-147
    • /
    • 2011
  • Modeling fishing-gear systems is essential to better understand the factors affecting their movement and for devising strategies to control movement. In this study, we present a generalized mathematical modeling methodology to analyze fishing gear and its various components. Fishing gear can be divided into a finite number of elements that are connected with flexible lines. We use an algorithm to develop a numerical method that calculates precisely the shape and movement of the gear. Fishinggear mathematical models have been used to develop software tools that can design and simulate dynamic movement of novel fishing-gear systems. The tool allowed us to predict the shape and motion of the gear based on changes in operation and gear design parameters. Furthermore, the tool accurately calculated the swept volume of towed gear and the surrounding volume of purse-seine gear. We analyzed the fished volume for trawl and purse-seine gear and proposed a new definition of fishing effort, incorporating the concept of fished space. This method may be useful for quantitative fishery research, which requires a good understanding of the selectivity and efficiency of fishing gear used in surveys.

Modeling of Mechanical Properties of Concrete Mixed with Expansive Additive

  • Choi, Hyeonggil;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.391-399
    • /
    • 2015
  • This study modeled the compressive strength and elastic modulus of hardened cement that had been treated with an expansive additive to reduce shrinkage, in order to determine the mechanical properties of the material. In hardened cement paste with an expansive additive, hydrates are generated as a result of the hydration between the cement and expansive additive. These hydrates then fill up the pores in the hardened cement. Consequently, a dense, compact structure is formed through the contact between the particles of the expansive additive and the cement, which leads to the manifestation of the strength and elastic modulus. Hence, in this study, the compressive strength and elastic modulus were modeled based on the concept of the mutual contact area of the particles, taking into consideration the extent of the cohesion between particles and the structure formation by the particles. The compressive strength of the material was modeled by considering the relationship between the porosity and the distributional probability of the weakest points, i.e., points that could lead to fracture, in the continuum. The approach used for modeling the elastic modulus considered the pore structure between the particles, which are responsible for transmitting the tensile force, along with the state of compaction of the hydration products, as described by the coefficient of the effective radius. The results of an experimental verification of the model showed that the values predicted by the model correlated closely with the experimental values.

TOWARD MECHANISTIC MODELING OF BOILING HEAT TRANSFER

  • Podowski, Michael Z.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.889-896
    • /
    • 2012
  • Recent progress in the computational fluid dynamics methods of two- and multiphase phase flows has already started opening up new exciting possibilities for using complete multidimensional models to simulate boiling systems. Combining this new theoretical and computational approach with novel experimental methods should dramatically improve both our understanding of the physics of boiling and the predictive capabilities of models at various scale levels. However, for the multidimensional modeling framework to become an effective predictive tool, it must be complemented with accurate mechanistic closure laws of local boiling mechanisms. Boiling heat transfer has been studied quite extensively before. However, it turns out that the prevailing approach to the analysis of experimental data for both pool boiling and forced-convection boiling has been associated with formulating correlations which normally included several adjustable coefficients rather than based on first principle models of the underlying physical phenomena. One reason for this has been the tendency (driven by practical applications and industrial needs) to formulate single expressions which encompass a broad range of conditions and fluids. This, in turn, makes it difficult to identify various specific factors which can be independently modeled for different situations. The objective of this paper is to present a mechanistic modeling concept for both pool boiling and forced-convection boiling. The proposed approach is based on theoretical first-principle concepts, and uses a minimal number of coefficients which require calibration against experimental data. The proposed models have been validated against experimental data for water and parametrically tested. Model predictions are shown for a broad range of conditions.

Modeling wind ribs effects for numerical simulation external pressure load on a cooling tower of KAZERUN power plant-IRAN

  • Goudarzi, Mohammad-Ali;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.479-496
    • /
    • 2008
  • In this paper, computer simulation of wind flow around a single cooling tower with louver support at the base in the KAZERUN power station in south part of IRAN is presented as a case study. ANSYS FLOTRAN, an unstructured finite element incompressible flow solver, is used for numerical investigation of wind induced pressure load on a single cooling tower. Since the effects of the wind ribs on external surface of the cooling tower shell which plays important role in formation of turbulent flow field, an innovative relation is introduced for modeling the effects of wind ribs on computation of wind pressure on cooling tower's shell. The introduced relation which follows the concept of equivalent sand roughness for the wall function is used in conjunction with two equations ${\kappa}-{\varepsilon}$ turbulent model. In this work, the effects of variation in the height/spacing ratio of external wind ribs are numerically investigated. Conclusions are made by comparison between computed pressure loads on external surface of cooling tower and the VGB (German guideline for cooling tower design) suggestions.

An Object-Oriented Process Modeling for the Development of the Integrated Logistics Support (민간부문에서의 ILS 개발에 관한 연구 - 객체지향 물류 프로세스 모델링의 응용을 중심으로)

  • 고일상;김재전
    • The Journal of Society for e-Business Studies
    • /
    • v.3 no.2
    • /
    • pp.179-202
    • /
    • 1998
  • This study reviews the concept of Integrated Logistic Support(ILS), ILS standards, ILS elements, and the processes of developing ILS elements and Logistics Support Analysis(LSA). It also examines the potentials of applying ILS development process to building CALS systems in commercial sectors in order to accomplish business process innovation and achieve life-cycle cost savings in product and equipment management. In order to utilize the ILS approach for commercial industries, we need customizing the process of Logistics Support Analysis defined in MIL-STD-1388-lA. The success of ILS implementation depends on the determination of the range of ILS elements in relation with the application environment, and the appropriate development of those elements. During the development process, in order to analyze and design logistics flow processes and supporting activities, we suggest the object-oriented logistics process modeling approach with basic concepts and constructs embedded in objects. Several diagrams including Class Diagram, Class-Instance Diagram, and Integrated Instance Diagram, are provided. Simple Steps to follow are suggested for the analysis and design of inter-organizational logistics flow and support processes. The outcomes of the study are expected to contribute to stimulating the utilization of ILS concepts and development process during building commercial CALS systems.

  • PDF

A Novel Approach for Integrating Security in Business Rules Modeling Using Agents and an Encryption Algorithm

  • Houari, Nawal Sad;Taghezout, Noria
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.688-710
    • /
    • 2016
  • Our approach permits to capitalize the expert's knowledge as business rules by using an agent-based platform. The objective of our approach is to allow experts to manage the daily evolutions of business domains without having to use a technician, and to allow them to be implied, and to participate in the development of the application to accomplish the daily tasks of their work. Therefore, the manipulation of an expert's knowledge generates the need for information security and other associated technologies. The notion of cryptography has emerged as a basic concept in business rules modeling. The purpose of this paper is to present a cryptographic algorithm based approach to integrate the security aspect in business rules modeling. We propose integrating an agent-based approach in the framework. This solution utilizes a security agent with domain ontology. This agent applies an encryption/decryption algorithm to allow for the confidentiality, authenticity, and integrity of the most important rules. To increase the security of these rules, we used hybrid cryptography in order to take advantage of symmetric and asymmetric algorithms. We performed some experiments to find the best encryption algorithm, which provides improvement in terms of response time, space memory, and security.

Research Trends of Receptor Models in Korea and Foreign Countries and Improvement Directions for Air Quality Management (수용모델의 국내외 연구동향과 대기질 관리를 위한 발전방향)

  • Hwang, InJo;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.459-476
    • /
    • 2013
  • Receptor models have been rapidly developed to manage the ambient air quality and to establish effective emission reduction strategies. The models are used to identify various emission sources and apportion quantitatively the ambient pollutant mass based on various measured physico-chemical properties of the air pollutants at the receptor site. Many types of receptor models have been applied to estimate source contributions since those provide fundamental information when establishing reasonable environmental policies in Korea and Foreign countries. In this paper, we will introduce the basic concept and principal of the receptor model, various types of existing models with discussing strong and weak points for each model, and performance procedure of PMF model as the most popular model in the world. Further the trends of receptor modeling studies in Korea and other countries were provided. Finally, the improvement directions of the modeling works for the national and local air quality management were suggested in this paper.

A Study on Statistical Modeling of Spatial Land-use Change Prediction (토지이용 공간변화 예측의 통계학적 모형에 관한 연구)

  • 김의홍
    • Spatial Information Research
    • /
    • v.5 no.2
    • /
    • pp.177-183
    • /
    • 1997
  • S1he concept of a class in the land-use classification system can be equally applied to a class in the land-use-change classification. The maximum likelihood method using linear discriminant function and Markov transition matrix method were integrated to a synthetic modeling effort in order to project spatial allocation of land-use-change and quantitative assignment of that prediction as a whole. The algorithm of both the multivariate discriminant function and the Markov chain matrix were discussed and the test of synthetic model on the study area was resulted in the projection of '90 year as well as '95 year land -use classification. The accuracy and the issue of modeling improvement were discussed eventually.

  • PDF

A Study on the Development of an Intelligent Modeler for Modernized Korean Traditional Buildings using BIM Systems (BIM 체계를 적용한 현대 한옥건축 모델러 개발에 관한 연구)

  • Cho, Yeon-Jun;Jo, Gi-Ran
    • Journal of the Korean housing association
    • /
    • v.19 no.6
    • /
    • pp.55-62
    • /
    • 2008
  • In the construction field, there has been a recent and unprecedented increase in the research and development of modernized Korean traditional buildings, This is because, in today's modern society, the basic needs for survival have already been met and more people are now recognizing the importance of the identity of our unique culture. It is therefore timeous to consider not just how to preserve and use Korean traditional buildings, but also how to develop them into more industrialized and modernized buildings in a practical way. Recently, the direction has been focused on the industrialization of modernized Korean traditional buildings, including their evolution, and development, as well as on the numerous cases where construction has been delayed. In order to industrialize modernized Korean traditional buildings, we need to standardize their form and actively introduce current IT (Information Technology). In order to achieve this, it is absolutely necessary to change from the CADD (Computer Aided Design and Drafting) system to the BIM (Building Information Modeling) system, which reflects the concept of Virtual Architecture. Therefore, the aim of this study is to discuss the possibilities of using BIM system for industrialization of modernized Korean traditional buildings, extend the foundation of the form library, and develop an intelligent modeler. It is also necessary to exemplify a case model for modernized Korean traditional buildings to which BIM is applied.

The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions

  • Abbasi, Saeed;Ardakani, Alireza;Yakhchalian, Mansoor
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.87-96
    • /
    • 2021
  • Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to investigate the effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions. The Von Wolffersdorff hypoplastic model with the intergranular strain concept is applied for modeling of granular soil (sand) and the behavior of structure is considered to be non-linear. Eight fault-normal near-field ground motion records, recorded on rock, are applied to the model. The numerical method developed is verified by comparing the results with an experimental test (shaking table test) for a soil-pile-structure system. The results, obtained from finite element modeling under near-fault ground motions, show that when the value of cap stiffness increases, the drift ratio of the structure decreases, whereas the pile relative displacement increases. Also, the residual deformations in the piles are due to the non-linear behavior of soil around the piles.