• 제목/요약/키워드: Concentric Tube

검색결과 86건 처리시간 0.024초

Finite element modeling of concentric-tube continuum robots

  • Baek, Changyeob;Yoon, Kyungho;Kim, Do-Nyun
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.809-821
    • /
    • 2016
  • Concentric-tube continuum robots have formed an active field of research in robotics because of their manipulative exquisiteness essential to facilitate delicate surgical procedures. A set of concentric tubes with designed initial curvatures comprises a robot whose workspace can be controlled by relative translations and rotations of the tubes. Kinematic models have been widely used to predict the movement of the robot, but they are incapable of describing its time-dependent hysteretic behaviors accurately particularly when snapping occurs. To overcome this limitation, here we present a finite element modeling approach to investigating the dynamics of concentric-tube continuum robots. In our model, each tube is discretized using MITC shell elements and its transient responses are computed implicitly using the Bathe time integration method. Inter-tube contacts, the key actuation mechanism of this robot, are modeled using the constraint function method with contact damping to capture the hysteresis in robot trajectories. Performance of the proposed method is demonstrated by analyzing three specifications of two-tube robots including the one exhibiting snapping phenomena while the method can be applied to multiple-tube robots as well.

2중관형 2상 열사이폰의 한계열유속 특성에 관한 연구 (A Study on Critical Heat Elux Characteristics in a Two-Phase Concentric-Tube Thermosyphon)

  • 김욱
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1419-1426
    • /
    • 2002
  • An experimental study was made to elucidate critical heat flux(CHF) characteristics in a two-phase concentric-tube thermosyphon. The experiment was performed by using saturated water, over the experimental range of configuration: inner diameter of heated outer tube D=12mm, outer diameter of unheated inner tube do=3 to 10mm and heated tube length L=100 to 1000mm. The experiment shows that the CHF is enhanced with increase in the inner tube diameter, and that the CHF decreases beyond a certain diameter of the inner tube. There is an optimum diameter for inner tube that maximizes the CHF, for each tube length and test liquid. The CHF maximum is about two to eight times as large as that without an inner tube. For a large inner tube, the CHF characteristics is similar to that for natural convective boiling in a vertical annular tube.

동심원관 환상공간내의 완전히 발달된 층류유동에서 물의 결빙현상에 대한 해석 (Analysis of ice-formation phenomena for fully developed laminar water flow in concentric circular-tube annuli)

  • 서정세;노승탁
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1552-1561
    • /
    • 1997
  • In this numerical study, it is investigated for the ice-formation phenomena for water flow in a concentric tube. The freezing layers of ice in both the inner and outer wall of a concentric tube are simultaneously considered. In the solution strategy, the complete set of governing equations in both the solid and liquid regions are resolved. Numerical results are obtained by varying the inner/outer wall temperatures and Reynolds number. The results show that the inner/outer wall temperatures have the great effect on the thickness of the solidification layer thereof. The shapes of ice layer in both the inner and outer wall can be expressed as a function of inverse Graetz number. As the wall temperature in inner or outer tube decreases, the heat transfer coefficients in both inner and outer ice layer surfaces increase absolutely.

동심원관-pin fin 열교환기를 이용한 소형 증기보일러 대류실 설계 (The design of heat exchanger of small size steam boiler using the concentric annuli tube with pin fin)

  • 김성일;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.115-118
    • /
    • 2012
  • The configurations of the heat exchanger of the boiler can be determined from the trade-off between the heat transfer area which is related to the capital cost and the pressure drop which is related to operating cost. In this study, 3.5 ton/hr small size marine boiler having concentric annuli tubes is the design boiler. To determine the optimizing point, according to diameter, number, length of tube, heat transfer, pressure drop, operating cost and capital cost have been calculated. Also, when the fin tube is replaced by the bare tube design parameters changed have been calculated.

  • PDF

하절기 태양열 시스템 적용을 위한 이중진공관 히트파이프형 집열기 열성능의 실험적 연구 (An Experimental Study for Apply Solar System on Thermal Performance of Heat Pipe Type Solar Collector using a Glass Concentric Evacuated Tube in a Summer)

  • 강창호;배찬효;홍정규;서정세
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1646-1651
    • /
    • 2004
  • This paper has been carried out to find the thermal efficiency and operating characteristics of heatpipe type solar collector using a glass concentric evacuated tube(CETC) during summer. In an experiment the flow rate of water in collector are 1.5l/min. Collector efficiency is $50{\sim}60%$ during time. The solar radiation appeared in a clear day is efficiency high. Efficiency curve fitted first order polynomial show that $F_{R}$$({\tau}{\alpha})$ and $F_{R}U_{L}$=1.316 is 0.601 and 1.316 respectively.

  • PDF

이중진공관형 태양열 집열기의 성능시험에 관한 연구 (Study on Performance Testing of Concentric Evacuated Tube Solar Energy Collector System)

  • 윤영환;김경환
    • 한국태양에너지학회 논문집
    • /
    • 제25권2호
    • /
    • pp.19-26
    • /
    • 2005
  • Concentric evacuated tube solar energy collector has been interested recently since government has driven to install alternative energy systems in new large building. In this paper, testing of the evacuated tube collector is conducted in outdoor during daytime by transient method. The collector thermal efficiencies are plotted in term of $(T_{in}-T_a)/Ic$, where $T_{in}$ is inlet working fluid temperature, $T_a$ is atmospheric temperature and $I_c$ is solar irradiation on the collector surface. The evacuated tube collector efficiency is ranged from 50% to 63% in real outdoor condition. In addition, the total overall heat loss coefficient is found to have an inverse variation to $(T_{in}-T_a)/I_c$ so that the coefficient becomes very high when $(T_{in}-T_a)/I_c$ is small.

A study on the structural performance of new shape built-up square column under concentric axial load

  • Kim, Sun-Hee;Yom, Kyong-Soo;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1451-1464
    • /
    • 2015
  • Recently, in recognition of their outstanding structural performance, the use of Concrete Filled Steel Tube (CFT) columns has been increased. New shape welded built-up square tube was developed by the authors for broader usability using thin steel plates which were bent to be L-shaped (Channel) and each unit members were welded to form square steel tube as an cost-efficient use of expensive steel. In addition, since the rib placed at the center of the tube width acts as an anchor; higher load capacity of buckling is achievable. In order to apply the new shape built-up square columns, the structural behavior and stress distribution with parameter width of thickness (b/t), with and without rib were predicted. The New shape welded built-up square tube effectively delayed the local buckling of the steel tube, which led to a greater strength and ductility than regular HSS.

가시화기법을 이용한 고정자장에서 이중원관내 자성유체의 열유동 특성에 관한 연구 (Thermal-flow Characteristics of Magnetic Fluid for Concentric Annuli Under Fixing Magnetic Field Using Visualization Technique)

  • 김형진;서재형;김대완;이무연;서이수
    • 한국자기학회지
    • /
    • 제23권1호
    • /
    • pp.26-30
    • /
    • 2013
  • 본 연구의 목적은 고정자장에서 이중원관내 인가자장의 방향 변화에 따른 자성유체의 열유동 특성에 관하여 실험적으로 연구하는 것이다. 이를 위하여 이중원관 내부원관은 $30^{\circ}C$로 유지하고 외부원관은 $25^{\circ}C$로 유지하였으며, 자성유체가 담겨져 있는 중앙관에 고정자장을 상하 좌우의 4방향으로 인가하였다. 인가자장은 영구자석 4개를 이용하여 이중원관 전체로 균일하게 인가하였고, 이중원관내 자성유체는 인가자장의 방향에 따라 열유동 특성이 변화였다. 결과적으로 인가자장을 상측면에서 인가하였을 경우 중력의 영향이 감소하는 방향으로 열확산이 이루어졌으며, 반대로 인가자장을 하측면에서 인가하였을 경우 외견상 중력에 자기 체적력이 추가되어 열확산이 촉진됨을 알 수 있다.

CONCEPTUAL FUEL CHANNEL DESIGNS FOR CANDU-SCWR

  • Chow, Chun K.;Khartabil, Hussam F.
    • Nuclear Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.139-146
    • /
    • 2008
  • This paper presents two of the fuel channel designs being considered for the CANDU-SCWR, a pressure-tube type supercritical water cooled reactor. The first is an insulated pressure tube design. The pressure tube is thermally insulated from the hot coolant by a porous ceramic insulator. Each pressure tube is in direct contact with the moderator, which operates at an average temperature of about $80^{\circ}C$. The low temperature allows zirconium alloys to be used. A perforated metal liner protects the insulator from being damaged by the fuel bundles and erosion by the coolant. The coolant pressure is transmitted through the perforated metal liner and insulator and applied directly to the pressure tube. The second is a re-entrant design. The fuel channel consists of two concentric tubes, and a calandria tube that separates them from the moderator. The coolant enters between the annulus of the two concentric fuel channel tubes, then exits the fuel channel through the inner tube, where the fuel bundles reside. The outer tube bears the coolant pressure and its temperature will be the same as the coolant inlet temperature, ${\sim}350^{\circ}C$. Advantages and disadvantages of these designs and the material requirements are discussed.

대체냉매 관내 열전달특성 시험을 위한 동심이중원관의 환상유로의 열전달계수 (Heat Transfer Coefficients of Concentric Annuli for Testing Heat Transfer Characteristics of Alternative Refrigerants in Tubes)

  • 김만회
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.63-67
    • /
    • 2021
  • Accurate measurements of the heat transfer coefficients of concentric annular space for the test section is important to measure the tube-side heat transfer coefficients of working fluids. This paper presents the annular side heat transfer coefficients of concentric annuli with variation of tube diameter ratios using Wilson plot method. The test facility has a straight, horizontal test section with an active length of 3.0 m. Inner/outer diameters of test tubes are 7.0/7.5 and 8.0/8.56 mm, respectively. An outer diameter of annulus side is 16.0 mm. The test results show that convective heat transfer coefficients in annuli increase with annular diameter ratio. The correlations for convective heat transfer coefficients in annuli are also developed.