• Title/Summary/Keyword: Concentric Doublepipe

Search Result 1, Processing Time 0.016 seconds

Numerical Study of Forced Convection Nanofluid in Double Pipe (이중관 내부 나노유체의 강제대류에 관한 수치적 연구)

  • Lim, Yun-Seung;Choi, Hoon-Ki
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.147-156
    • /
    • 2019
  • Numerical study was performed to investigate the convective heat transfer of Al2O3/water nanofluid flowing through the concentric double pipe counterflow heat exchangers. Hot fluid flowing through the inner pipe transfers its heat to cooling fluid flowing in the outer pipe. Effects of important parameters such as hot and cold volume flow rates, fluid type in the outer and inner pipes, and nanoparticles concentration on the heat transfer and flow characteristics are investigated. The results indicated that the heat transfer performance increases with increasing the hot and cold volume flow rates, as well as the particle concentrations. When both outer and inner pipes are nanofluids with 8% nanoparticle volume concentration, nanofluids showed up to 17% better heat transfer rate than basic fluids. Also, the average heat transfer coefficient of the base fluid for annulus-side improved by 31%. Approximately 20% enhancement in the heat exchanger effectiveness can be achieved with the addition of 8% alumina particles in base fluid. But, addition of nanoparticles to the base fluid enhanced friction factor by about 196%.