• 제목/요약/키워드: Concentration of pore water

검색결과 281건 처리시간 0.027초

Elution Behavior of Nutrient Salts from Sediment and its Impact on Water Bodies

  • Wada, Keiko;Haruki, Fumio;Ishita, Kyoji;Okada, Yuki
    • Environmental Engineering Research
    • /
    • 제15권1호
    • /
    • pp.41-48
    • /
    • 2010
  • This paper describes the influence of nutrient salts eluted from the bottom of a closed water area where polluted sediment has been deposited by inflowing river water. The elution pattern was monitored at our experimental facility. Both the sediment pore water and water above the bottom were sampled using a dialyzer sampler (peeper). The pore water of the eutrophicated sediment contained a large amount of nutrient salts, and the effect of elution was confined to a limited area of the bottom surface. The nutrient concentration of the sediment pore water was closely related to both the water temperature and dissolved oxygen (DO) concentration. The eluted nutrients from the sediment provided a source for phytoplankton and algae growth. This experimental data indicated that the water quality of the surface was not directly connected to the eluted nutrient salts, while it was indirectly affected by the total ecosystem, including all the organisms within an area and their environment.

Biotic ligand model과 종 민감도 분포를 이용한 토양 공극수 내 Cu의 생태독성학적 허용농도 결정에 미치는 환경인자의 영향 (Effect of Environmental Factors on the Determination of the Ecotoxicological Threshold Concentration of Cu in Soil Pore Water through Biotic Ligand Model and Species Sensitivity Distribution)

  • 유기현;안진성;정부윤;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권1호
    • /
    • pp.49-58
    • /
    • 2017
  • Biotic ligand model (BLM) and species sensitivity distribution (SSD) were used to determine the site-specific Cu threshold concentration (5% hazardous concentration; HC5) in soil pore water. Model parameters for Cu-BLM were collected for six plants, one collembola, and two earthworms from published literatures. Half maximal effective concentration ($EC_{50}\{Cu^{2+}\}$), expressed as $Cu^{2+}$ activity, was calculated based on activities of major cations and the collected Cu-BLM parameters. The $EC_{50}\{Cu^{2+}\}$ varied from 2 nM to $251{\mu}M$ according to the variation in environmental factors of soil pore water (pH, major cation/anion concentrations) and the type of species. Hazardous activity for 5% (HA5) and HC5 calculated from SSD varied from 0.076 to $0.4{\mu}g/L$ and 0.4 to $83.4{\mu}g/L$, respectively. HA5 and HC5 significantly decreased with the increase in pH in the region with pH less than 7 due to the decrease in competition with $H^+$ and $Cu^{2+}$. In the region with pH more than 7, HC5 increased with the increase in pH due to the formation of complexes of Cu with inorganic ligands. In the presence of dissolved organic carbon (DOC), Cu and DOC form a complex, which decreases $Cu^{2+}$ activity in soil pore water, resulting in up to 292-fold increase in HC5 from 0.48 to $140{\mu}g/L$.

패각분말을 이용한 살균성 메디아의 제조 및 정수기용 필터에 대한 응용 (Manufacture of Sterilizing Media with Shell Powder and It's Application to the Filter of Water Clarifier)

  • 신춘환
    • 한국환경과학회지
    • /
    • 제15권11호
    • /
    • pp.1027-1034
    • /
    • 2006
  • Antimicrobial powder was made by exchanging silver ion on calcined oyster shell. On the purpose of application to water clarifier, bail-type media mixed with antimicrobial powder and $0{\sim}30%$ white kaoline were made. The sterilization effect, pore size distribution and zeta potential was tested to indicate the condition for the media of water clarifier. From these tests, it was confirmed that this media have an excellent sterilization power on $G^-\;and\;G^+$ germs. As the concentration of the exchanged silver ion increased, the surface charge density of the anions on the surface of the media also increased. The surface pore size decreased with the concentration of silver ion and 20% more white kaoline ratio. Consequently, mixing ratio of white kaoline would appear to indicate the optimun condition as media have sterilization power.

Study of nitrate concentration in Najaf Abad aquifer using GIS

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • 제11권2호
    • /
    • pp.167-172
    • /
    • 2020
  • The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m x 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.

담수에 의한 밭 토양 공극수의 화학적 특성 및 영양분 농도 변화 (Change of Chemical Properties and Nutrient Dynamic in Pore Water of Upland Soil During Flooding)

  • 김재곤;전철민;이진수
    • 자원환경지질
    • /
    • 제41권3호
    • /
    • pp.327-334
    • /
    • 2008
  • 퇴적물 공극수의 화학적 특성과 영양분의 농도변화 및 이동특성 파악은 지표수 수질관리에 중요한 요소가 된다. 밭토양 30cm와 상등수 15cm로 구성된 microcosm을 이용하여 담수에 의한 토양 공극수 및 상등수의 화학적 특성과 영앙분의 농도변화를 6개월 동안 모니터링하였다. 담수 5주가 경과한 후 토양 색은 yellowish red에서 grey로 변하였으며 토양표면에 붉은 색의 산화층이 관찰되었다. 토양 공극수의 산화환원전위와 pH는 감소하였다. 담수에 의하여 상등수의 $NO_3^-$ 농도는 증가하고 PO_4^{3-}$ 농도는 감소하였으나 토양 공극수의 $NH_4^+$, $PO_4^{3-}$, FE, Mn 농도는 증가하였다. 상등수의 $NO_3^-$ 농도 증가는 토양에서 생성된 $NH_4^+$가 상등수로 이동 및 산화에 기인하며, 토양 공극수의 PO_4^{3-}$ 농도증가는 산화철과 산화망간의 용해에 의하여 이에 흡착되어 있던 PO_4^{3-}$가 용출됨에 기인한 것으로 판단된다. PO_4^{3-}$에 대한 흡착력이 강한 산화철과 산화망간을 많이 함유하고 있는 토양표면의 산화층은 PO_4^{3-}$의 토양으로부터 상등수로 확산을 방해하는 것으로 판단된다.

지하수 관개 시비의 지하수 내 질산성질소 저감 효과 평가 (Evaluation of the Effect of Pump and Fertilize on Nitrate Reduction in Groundwater)

  • 염여훈;김영;김문수;박선화;한경진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제29권1호
    • /
    • pp.18-27
    • /
    • 2024
  • In this study, the pump and fertilize (PAF) was applied to reduce nitrogen infiltration into groundwater at three corn cultivation sites over a three-year period, and its effectiveness was evaluated. PAF involves pumping nitrate-contaminated groundwater and using it for irrigation, thereby replacing the need for chemical fertilizers. This method not only substitutes chemical fertilization, but also reduces nitrogen infiltration into groundwater through root zone consumption. To confirm PAF's effectiveness, an equal amount of nitrogen was applied in each cultivation plot, either through chemical fertilizer or irrigation with nitrate-contaminated groundwater. Regular monitoring of infiltrating pore water and groundwater was conducted in each cultivation plot. The linear regression slope for nitrate concentration in the pore water after repeated application of PAF ranged from -3.527 to -8.3485 mg-N/L/yr, confirming that PAF can reduce nitrate concentration in the pore water. With an increasing proportion of PAF, the infiltrating nitrate mass in pore water was reduced by 42% compared to plots fertilized with chemical fertilizer. Additionally, the linear regression slope of nitrate concentration in groundwater was calculated as -2.2999 and -9.2456 mg-N/L/yr. Therefore, continuous application of PAF in rural areas is expected to significantly contribute to reducing nitrate concentration in groundwater.

고로 슬래그 시멘트 페이스트 내 자유염화물량과 물가용성 염화물량 평가에 관한 연구 (A Study on the Evaluation of the Water-soluble Chloride Content and Free-chloride Content in Blast Furnace Slag Cement Pastes)

  • 조영국;소승영
    • 한국건축시공학회지
    • /
    • 제4권4호
    • /
    • pp.95-101
    • /
    • 2004
  • The purpose of this paper is to compare free-chloride content with water-soluble chloride in blast furnace cement(BSC) paste. The content of free-chloride in cement paste measured by pore solution analysis and water-soluble chloride measured by ASTM. The result of this study are as follows: 1. The concentration of chloride ion in pore solution of BSC-solidified matrix is almost as low as 43-71% compared to that of OPC-solidified matrix containing the same chloride content in cement paste. 2. The binding capacity of specimens, OPC Pl-P5, are 93.5-77%, but the binding capacity of specimens, BSC Pl-P5 are 97.1-86.1%, which is to be as high as 2-9.1% compared to OPC containing the same chloride content. 3. In terms of water-soluble chloride content in BSC paste are 15-31.7 percent of chloride addition but free-chloride content in pore solution are 2.9-13.9 percent of chloride addition. The free-chloride content in pore solution is 19.3-43.8 percent lower for the water-soluble chloride content in cement paste.

시멘트 경화체내 염화물의 고정화 성상 ($C_3A$ 함유량을 중심으로) (Behavior of Chloride Binding in Hardened Cement Pastes (Forcused on $C_3A$ content))

  • 임순지;소형석;소승영;박홍신;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.87-92
    • /
    • 1994
  • The main objective of this study is to determine the critical chloride ion concentrations in the pore solutions causing depassivation of steel reinforcement in concrete made with cements of different $C_3A$ contents. Cement pastes with water-ratio of 0.5 were prepared using four cements with $C_3A$ contents of 0.46, 5.97, 9.14, and 9.65 percent. The pastes were allowed to hydrate in sealed containers for 28days and then objected to pore solution expression. The expressed pore fluids were analyzed for chloride and hydroxyl ion concentrations. It was found that the free cholride concentration in the pore solution decreases significantly with an increase in the $C_3A$ content of the cement. With increasing level of chloride addition, although the alsolute amount of bound chloride increase, the ratio of bound to total chlorides decreases.

  • PDF

낙동강변 지하수 및 지표수의 주요원소 용존 농도 결정에 대한 막필터 공극 크기의 영향 분석 (Evaluating Effects of Membrane Filter Pore Sizes on Determination of Dissolved Concentrations of Major Elements in Groundwater and Surface Water Near Nakdong River)

  • 김보아;고동찬;하규철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권4호
    • /
    • pp.31-40
    • /
    • 2015
  • Various types of inorganic and organic colloids are present in natural water including groundwater. Previous studies showed that Fe, Mn and Al are colloid-forming elements and dissolved concentrations can be erroneous for these elements if water samples are not properly filtered. Dissolved concentrations of elements including Ca, Na, Mg, K, Fe, Mn, Si and Al in groundwater from alluvial and bedrock aquifers, and surface water near Nakdong River were determined to evaluate effects of colloids on dissolved concentrations in natural water samples using various pore sizes of filters. Groundwater is mostly anoxic and have elevated concentrations of Fe and Mn, which provides a unique opportunity to observe the effects of colloids on dissolved concentrations of colloid-forming elements. Membrane filters with four kinds of pore sizes of 1000 nm, 450 nm, 100 nm, and 15 nm were used for filtration of water samples. Concentrations of dissolved concentrations in each filtrate did not show significant differences from 1000 nm to 100 nm. However, concentrations of all elements considered were decreased in the filtrates obtained using 15 nm pore size filters by 10 to 15% compared to those using 450 nm except for bedrock groundwater. Al in surface water showed a distinct linear decrease with the decrease of filter pore sizes. These results showed that 100 nm pore size had little effect to remove colloidal particles in alluvial groundwater and surface water in our study. In contrast, significant concentration decreases in 15 nm pore size filtrates indicate that the presence of 15 to 100 nm colloidal particles may affect determination of dissolved concentrations of elements in natural water.

산 촉매가 물유리 기반 실리카 에어로겔의 기공구조에 미치는 영향 (Effect of Acid Catalyst Kinds on the Pore Structural Characteristics of Water Glass based Silica Aerogel)

  • 나하윤;정해누리;이규연;구양서;박형호
    • 마이크로전자및패키징학회지
    • /
    • 제24권3호
    • /
    • pp.13-18
    • /
    • 2017
  • 물유리는 기존의 silicon alkoxide보다 훨씬 단가가 저렴하여 상업화에 유리하다는 장점을 나타낸다. 물유리 기반 실리카 에어로겔의 제조에서 산 촉매에 의한 중합 과정이 최종 미세 기공구조 특성에 상당한 영향을 끼치는데, 본 연구에서는 이러한 산 촉매의 종류와 양에 대한 물유리 기반 실리카 에어로겔의 비표면적, 기공 크기 분포 등 각 경우에 해당하는 물성 및 그에 따른 차이를 연구하였다. 최종 생성물의 물성을 통해 물유리 기반 실리카 에어로겔은 중합 반응에 관여하는 산 촉매의 종류와 농도, 몰수에 의해 영향을 받고, 특히 산 촉매의 몰수에 의한 영향이 몰 농도에 의한 영향보다 크게 작용함을 확인하였다. 기존 방식으로 4M 염산 촉매를 첨가할 경우 비표면적이 $394m^2/g$, 기공의 부피가 2.20 cc/g, 평균 기공 지름이 22.3 nm이며 기공률이 92.53%인 실리카 에어로겔을 합성할 수 있었다. 반면 4M의 황산 촉매를 적정량의 몰수인 73 mmol로 투입하여 최종 물유리 기반 실리카 에어로겔을 제조할 경우 비표면적은 $516m^2/g$, 기공의 부피는 3.10 cc/g, 평균 기공 지름은 24.1 nm, 기공률은 96.1%로, 기존의 산 촉매를 투입하여 만든 물유리 기반 실리카 에어로겔보다 전반적으로 기공구조의 특성이 향상됨을 확인하였다.