• Title/Summary/Keyword: Concentration boundary layer

Search Result 163, Processing Time 0.03 seconds

A Survey on the Long-range Transport of Sulfur Compounds by Aircraft Measurement over the Yellow Sea in 1998 (황해상공에서의 항공기관측에 의한 황화합물 장거리이동 특징에 대한 조사)

  • 김병곤;안준영;김종호;박철진;한진석;나진균;최양일
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.713-725
    • /
    • 1999
  • Air pollutants($SO_2$, NOx, $O_3$ and aerosol number) were measured using an aircraft to investigate the characteristical features of long-range transport of sulfur compounds over the Yellow Sea for the periods of 26~27 April and 7~10 November in 1998. The mean $SO_2$ concentrations of April 26th~27th and November 7th~10th flight were 0.6~1.8 ppb and 0.5~8.3 ppb, respectively, and the sulfur transport was largely limited to the atmospheric boundary layer. Especially, $SO_2$ increased up to 8.3 ppb altogether with the increase of particle number concentraton especially on November 8, 1998. In addition, $O_3$ was remarkably decreased against the increase of $SO_2$and particle number concentrations. This enhanced $SO_2$ concentration occurred in the low level westerlies in association with the anticyclonic flow over Southern China and the cyclonic circulation over Manchuria. Aerosol analyses at Taean site also showed that sulfate concentration increased 2~3 times higher than those of another sampling days, which could suggest possible interactions between aerosol particels and tropospheric ozone. A rigorous evaluation will be possible after the more intensive measurements and quantitative analyses with detailed chemistry model including the postulated heterogeneous mechanism.

  • PDF

Combustion Characteristics of Minco Sub-bituminous Coal at Oxy-Fuel Conditions (민코 아역청탄의 순산소 연소특성)

  • Kim, Jae-Kwan;Lee, Hyun-Dong;Jang, Seok-Won;Kim, Sung-Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • New way to effectively capture $CO_2$ in coal fired power plant is the combustion of coal using oxy-fuel technology. Combustion characteristics of Minco sub-bituminous coal at oxy-fuel conditions using TGA and drop tube furnace (DTF) were included activation energy about the char burnout, volatile yield and combustion efficiency of raw coal, the porosity of pyrolyzed char and fusion temperature of by-product ash. TGA result shows that the effect of $CO_2$ on combustion kinetics reduces activation energy by approximately 7 kJ/mol at air oxygen level(21% $O_2$) and decreases the burning time by approximately 16%. The results from DTF indicated similar combustion efficiency under $O_2/CO_2$ and $O_2/N_2$ atmospheres for equivalent $O_2$ concentration whereas high combustion efficiency under $O_2/N_2$ than $O_2/CO_2$ was obtained for high temperature of more than $1,100^{\circ}C$. Overall coal burning rate under $O_2/CO_2$ is decreased due to the lower rate of oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. By-product ash produced under $O_2/CO_2$ and $O_2/N_2$ was similar IDT in irrelevant to $O_2$ concentration and atmospheres gas during the coal combustion.

  • PDF

A Mathematical Framework for Estimating Non-point Waste Load at Enclosed Beaches (연안 하구역 내의 비점오염부하량 산정을 위한 수학모델의 적용)

  • Ahn, Jong Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.111-115
    • /
    • 2010
  • Beaches in estuaries, bays, and harbors are frequently contaminated with indicators of human pathogens such as fecal indicator bacteria. Tracking down the sources of contamination at these enclosed beaches is complicated by the many point and non-point sources that could potentially degrade water quality along the shore. A mathematical framework was developed to test quantitative relationships between fecal indicator bacteria concentration in ankle depth water at enclosed beaches, the loading rate of fecal indicator bacteria from non-point sources located along the shore, physical characteristics of the beach that affect the transport of fecal indicator bacteria across the beach boundary layer, and a background concentration of fecal indicator bacteria attributable to point sources of fecal pollution that impact water quality over a large region of the embayment. Field measurements of fecal indicator bacteria concentrations and water turbulence at an enclosed beach were generally consistent with predictions and assumptions of the mathematical model, and demonstrated its utility for assessing waste load of non-point sources, such as runoff, bather shedding, bird droppings, and tidal washing of contaminated sediments.

Observational Evidence of Giant Cloud Condensation Nucleus Effects on the Precipitation Sensitivity in Marine Stratocumulus Clouds

  • Jung, Eunsil
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.498-510
    • /
    • 2022
  • Cloud-aerosol interactions are one of the paramount but least understood forcing factors in climate systems. Generally, an increase in the concentration of aerosols increases the concentration of cloud droplet numbers, implying that clouds tend to persist for longer than usual, suppressing precipitation in the warm boundary layer. The cloud lifetime effect has been the center of discussion in the scientific community, partly because of the lack of cloud life cycle observations and partly because of cloud problems. In this study, the precipitation susceptibility (So) matrix was employed to estimate the aerosols' effect on precipitation, while the non-aerosol effect is minimized. The So was calculated for the typical coupled, well-mixed maritime stratocumulus decks and giant cloud condensation nucleus (GCCN) seeded clouds. The GCCN-artificially introduced to the marine stratocumulus cloud decks-is shown to initiate precipitation and reduces So to approximately zero, demonstrating the cloud lifetime hypothesis. The results suggest that the response of precipitation to changes in GCCN must be considered for accurate prediction of aerosol-cloud-precipitation interaction by model studies

The Effect of Grain Boundary Diffusion on the Boundary Structure and Electrical Characteristics of Semiconductive $SrTiO_3$ Ceramics (입계확산에 의한 반도성 $SrTiO_3$ 세라믹스의 입계구조 및 전기적 특성 변화)

  • 김태균;조남희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • Semiconductive SrTiO3 ceramic bodies were prepared by conventional ceramic powder processes in-cluding sintering in a reducing atmosphere. Sodium or potassium ions were diffused from the surface of the sintered bodies into the inner region using thermal diffusion process at 800-120$0^{\circ}C$. The effects of such ther-mal treatments on the electrical and chemical characteristics of the grain boundaries were investigated. The presence of sodium or potassium ions at grain boundaries produces non-linear current-voltage behaviors, electrical boundary potential barriers of 0.1-0.2eV, and threshold voltages of 10-70V. The diffused ions form diffusion layers with thicknesses of 20-50nm near the grain boundaries, reducing the concentration of strontium and oxygen.

  • PDF

Relationship between Pollen Concentration and Meteorological Condition in an Urban Area (도시지역 공중화분 농도와 기상조건과의 관계)

  • Oh, In-Bo;Kim, Yangho;Choi, Kee-Ryong;Lee, Ji Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.780-788
    • /
    • 2013
  • This study attempted to determine important meteorological parameters related to airborne pollen concentrations in urban areas. Hourly pollen measurement data were prepared from a regular sampling with a volumetric Burkard spore trap at a site in the Ulsan city, during the spring season (March~May) of 2011. Results showed that the daily mean and maximum concentrations for total pollen counts during the spring season were statistically significantly correlated with both air temperature and wind speed; daily mean pollen concentration was the most highly related to daily maximum temperature (r=0.567, p<0.001). It was also identified that pollen concentration has a stronger relationship with wind speed at the rural site than at the urban one, which confirms that strong wind conditions over the pollen sources area can be favorable for pollen dispersal, resulting in increases in airborne pollen concentrations downwind. From the results of an oak-pollen episode analysis, it was found that there was a significant relationship between hourly variation of oak pollen concentrations and dynamic meteorological factors, such as wind and mixing height (representing the boundary layer depth); especially, a strong southwestern wind and elevated mixing height was associated with high nocturnal concentrations of oak pollen. This study suggests that temperature, wind, and mixing height can be important considerations in explaining the pollen concentration variations. Additional examination of complex interactions of multiple meteorological parameters affecting pollen behavior should be carried out in order to better understand and predict the temporal and spatial pollen distribution in urban areas.

Characteristics of Aerosol and Cloud Condensation Nuclei Concentrations Measured over the Yellow Sea on a Meteorological Research Vessel, GISANG 1 (기상 관측선 기상 1호에서 관측한 황해의 에어로졸과 구름응결핵 수농도 특성 연구)

  • Park, Minsu;Yum, Seong Soo;Kim, Najin;Cha, Joo Wan;Ryoo, Sang Boom
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.243-256
    • /
    • 2016
  • Total number concentration of aerosols larger than 10 nm ($N_{CN10}$), 3 nm ($N_{CN3}$), and cloud condensation nuclei ($N_{CCN}$) were measured during four different ship cruises over the Yellow Sea. Average values of $N_{CN10}$ and $N_{CCN}$ at 0.6% supersaturation were 6914 and $3353cm^{-3}$, respectively, and the minimum value of $N_{CN10}$ was $2000cm^{-3}$, suggesting significant anthropogenic influence even at relatively clean marine environment. Although $N_{CN10}$ and $N_{CN3}$ increased near the coast due to anthropogenic influence, $N_{CCN}$ was relatively constant and therefore $N_{CCN}/N_{CN10}$ ratio tended to decrease, suggesting that coastal aerosols were relatively less hygroscopic. In general $N_{CN10}$, $N_{CN3}$, and $N_{CCN}$ during the cruises seemed to be significantly influenced by wet scavenging effects (e.g. fog) and boundary layer height variation. Only one new particle formation (NPF) event was observed during the measurement period. Interestingly, the NPF event occurred during a dust storm event and spatial scale of the NPF event was estimated to be larger than 100 km. These results demonstrate that aerosol and CCN concentration over the Yellow Sea can vary due to various different factors.

Characteristics of Vertical Profiles of Local Aerosol Mass Concentration According to Air Mass Pathways over the Korean Peninsula During Winter (한반도 겨울철 공기이동경로에 따른 에어로졸 농도의 연직분포 특성)

  • Ko, A-Reum;Kim, Jinwon;Chang, Ki-Ho;Cha, Joo-Wan;Lee, Sang-Min;Ha, Jong-Cheol
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.525-535
    • /
    • 2019
  • Vertical distributions of aerosol mass concentrations over Seoul and Gangneung from January to February 2015 were investigated using aerosol Mie-scattering lidars. Vertical mass concentration of aerosol was calculated from the lidar data using KALION's algorithm and quantitatively compared with ground PM10 concentration to obtain objectivity of data. The backward trajectories calculated using HYSPLIT (version 4) were clustered into 5 traces for Seoul and 6 traces for Gangneung, and the observed aerosol vertical mass distribution was analyzed for individual trajectories. Result from the analysis shows that, aerosol concentrations with in the planetary boundary layer were highest when airflows into the measurement points originated in the Shandong Peninsula or the Inner Mongolia. In addition, the difference of aerosol mass concentrations in the two regions below 1 km was about twice as large as that in the long range transport from the Shandong Peninsula compared to the local emission. This result shows that the air quality over Korea related to particulate matters are affected more by aerosol emissions in the upstream source regions and the associated transboundary transports than local emissions. This study also suggests that the use of local aerosol observations is critical for accurate simulations of aerosol-cloud interactions.

Impacts of Local Meteorology caused by Tidal Change in the West Sea on Ozone Distributions in the Seoul Metropolitan Area (서해 조석현상에 따른 국지기상 변화가 수도권 오존농도에 미치는 영향)

  • Kim, Sung Min;Kim, Yoo-Keun;An, Hye Yeon;Kang, Yoon-Hee;Jeong, Ju-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.341-356
    • /
    • 2019
  • In this study, the impacts of local meteorology caused by tidal changes in the West Sea on ozone distributions in the Seoul Metropolitan Area (SMA) were analyzed using a meteorological model (WRF) and an air quality (CMAQ) model. This study was carried out during the day (1200-1800 LST) between August 3 and 9, 2016. The total area of tidal flats along with the tidal changes was calculated to be approximately $912km^2$, based on data provided by the Environmental Geographic Information Service (EGIS) and the Ministry of Oceans and Fisheries (MOF). Modeling was carried out based on three experiments, and the land cover of the tidal flats for each experiment was designed using the coastal wetlands, water bodies (i.e., high tide), and the barren or sparsely vegetated areas (i.e., low tide). The land cover parameters of the coastal wetlands used in this study were improved in the herbaceous wetland of the WRF using updated albedo, roughness length, and soil heat capacity. The results showed that the land cover variation during high tide caused a decrease in temperature (maximum $4.5^{\circ}C$) and planetary boundary layer (PBL) height (maximum 1200 m), and an increase in humidity (maximum 25%) and wind speed (maximum $1.5ms^{-1}$). These meteorological changes increased the ozone concentration (about 5.0 ppb) in the coastal areas including the tidal flats. The increase in the ozone concentration during high tide may be caused by a weak diffusion to the upper layer due to a decrease in the PBL height. The changes in the meteorological variables and ozone concentration during low tide were lesser than those occurring during high tide. This study suggests that the meteorological variations caused by tidal changes have a meaningful effect on the ozone concentration in the SMA.

Silicidation of the Co/Ti Bilayer on the Doped Polycrystalline Si Substrate (다결정 Si기판 위에서의 Co/Ti 이중층의 실리사이드화)

  • Kwon, Young-Jae;Lee, Jong-Mu;Bae, Dae-Lok;Kang, Ho-Kyu
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.579-583
    • /
    • 1998
  • Silicide layer structures, agglomeration of silicide layers, and dopant redistributions for the Co/Ti bilayer sputter-deposited on the P-doped polycrystalline Si substrate and subjected to rapid thermal annealing were investigated and compared with those on the single Si substrate. The $CoSi_2$ phase transition temperature is higher and agglomeration of the silicide layer occurs more severely for the Co/Ti bilayer on the doped polycrystalline Si substrate than on the single Si substrate. Also, dopant loss by outdiffusion is much more significant on the doped polycrystalline Si substrate than on the single Si substrate. All of these differences are attributed to the grain boundary diffusion and heavier doping concentration in the polycrystalline Si. The layer structure after silicidation annealing of Co/ Tildoped - polycrystalline Si is polycrystalline CoSi,/polycrystalline Si, while that of Co/TiI( 100) Si is Co- Ti- Si/epi- CoSi,/(lOO) Si.

  • PDF