• Title/Summary/Keyword: Concentration Transition

Search Result 627, Processing Time 0.032 seconds

Micelle Studies of Dodecyltrimethylammonium Bromide in Water as Probed by Benzene: Effect on Shapes and Sizes of Micelles

  • Yoon Seob Lee;Kyu Whan Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.599-602
    • /
    • 1993
  • Micellization process of dodecyltrimethylammonium bromide (DTAB) was studied by using the aromatic probe (benzene) which dissolved in aqueous DTAB solutions. Proton NMR chemical shift measurements of DTAB and DTAB-benzene system showed that benzene molecules solubilized near the micelle-water interface and that the solubilization sites within the micelles are different as the DTAB concentration is passing through 32.0 mM (hereafter we refer this concentration as the second CMC). The change of solubilization sites is also confirmed by abrupt changes of the chemical shifts and relaxation rates of benzene protons in DATB-benzene system at this concentration. It was revealed from the electrical conductivity and viscosity measurements that the solubilization of benzene caused the DTAB micelles to swell out and that the micelles prepared after the second CMC had a greater swelling effect than those prepared before the second CMC. The transition point which reflects the saturation of benzene molecules on the solubilization sites of micelles was observed at one benzene/micellized DTAB mole ratio from the electrical conductivity measurements. Along the different concentration of DTAB solution, this transition point is appeared clearly after the second CMC. From these results it is suggested that the shapes and/or sizes of DTAB micelles of the spherical micelle region prepared after the second CMC are different from those prepared before the second CMC.

ANION INDUCED BLUE TO PURPLE TRANSITION IN BACTERIORHODOPSIN

  • Singh, Anil K.;Kapil, Mrunalini M.
    • Journal of Photoscience
    • /
    • v.3 no.2
    • /
    • pp.71-76
    • /
    • 1996
  • Anil K. Singh, Mrunalini M. Kapil, Department of Chemistry, Indian Institute of Technology Bombay - 400076, INDIA Purple membrane (PM, $\lambda$$_{max}$ 570 nm) of H. halobium on treatment with sulphuric acid changes its colour to blue ($\lambda$$_{max}$ 608 nm). The purple chromophore can be regenerated from the blue chromophore by exogeneous addition of anions such as CI$^-$ and HPO$_4^{2-}$. Chloride ion is found to be more effective than the dibasic phosphate ion in regenerating the purple chromophore. Nevertheless, one thing common to the anion regeneration is that both CI$^-$ and HPO$_4^{2-}$ show marked pH effect. At pH 1.0 the efficiency of regeneration of the purple chromophore is greater than at pH 2.0, for the same anion concentration. Fluorescence and circular dichroic studies indicate that the proteins do not undergo drastic changes at the secondary' or tertiary structure level and the native structure is preserved during this transition. However, chromophoric-site interactions between retinal and the apoprotein are affected during this colour transition. A molecular mechanism is advanced for this transition.

  • PDF

Time-Temperature-Transition Diagrams with Liquid Crystalline Phase Changes of Liquid Crystalline Epoxy (열경화성 액정 에폭시 수지의 액정상 변화를 포함한 시간-온도-전이 다이어그램)

  • Seung Hyun Cho
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.215-218
    • /
    • 2024
  • Liquid crystalline thermosetting epoxy oligomer DD-A was synthesized with Diglycidyl ether of 4,4'-dihydroxy-α-methylstilbene (DGE-DHMS) and aniline in a ratio of 2:1 and cured with a catalytic curing agent, 1-Methyl Imidazole. The gelation times and vitrification times were measured to create Time-Temperature-Transition Diagrams with liquid crystalline phase changes. It was found that the gelation and vitrification times were decreased as the concentration of curing agent increased, and the vitrification curve showing a typical S-shape was confirmed.

Synthesis and Surface Characterization of Transition Metal Doped Mesoporous Silica Catalysts for Decomposition of N2O (N2O 분해를 위한 전이금속이 도핑된 메조포러스 실리카 촉매의 합성과 표면 특성에 관한 연구)

  • Lee, Kamp-Du;Noh, Min-Soo;Park, Sang-Won
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.787-795
    • /
    • 2012
  • The purpose of this study is to synthesize transition metal doped mesoporous silica catalyst and to characterize its surface in an attempt to decomposition of $N_2O$. Transition metal used to surface modification were Ru, Pd, Cu and Fe concentration was adjusted to 0.05 M. The prepared mesoporous silica catalysts were characterized by X-ray diffraction, BET surface area, BJH pore size, Scanning Electron Microscopy and X-ray fluorescence. The results of XRD for mesoporous silica catalysts showed typical the hexagonal pore system. BET results showed the mesoporous silica catalysts to have a surface area of 537~973 $m^2/g$ and pore size of 2~4 nm. The well-dispersed particle of mesoporous silica catalysts were observed by SEM, the presence and quantity of transition metal loading to mesoporous surface were detected by XRF. The $N_2O$ decomposition efficiency on mesoporous silica catalysts were as follow: Ru>Pd>Cu>Fe. The results suggest that transition metal doped mesoporous silica is effective catalyst for decomposition of $N_2O$.

Selection on Representative Compound According to the Characteristics of the Change of VOC Concentration Indoor from the Newly Built House in Japan (일본 신축주택의 실내 VOC의 실태와 농도추이 특성에 의한 유형별 대표물질선정)

  • Yoo, Bok-Hee;Tanaka, Tatsuaki;Yoon, Chung-Sook
    • KIEAE Journal
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 2001
  • The VOC, which were detected from the newly built house, exist as a certain number of types according to the characteristics of the change of VOC concentration indoors. In this paper, we aim to divide the VOC into types so that those with similar characteristics of the transition of their concentration are in the same group and select the representative compound according to each classified type, and to verify these processes statistically in order to verify and propose new method creating the representing index of the VOC concentration in indoor which is used in evaluation of the degree of air pollution. As a result, the characteristic of the change of VOC concentration in the indoor can be divided into three types. Type1; the group in which the concentration is relatively high right after the completion of the house, and then decreases rapidly. Type2; the group in which the concentration is relatively low right after the completion of the house, and then although it shows the tendency of increasing and decreasing repeatedly, it decreases overall. Type3 is the group, which show only one peak at a certain time during the measuring period. As the method like this was verified to have the statistical significance, the Ethylbenzene was selected as the representative compound of type1, and Styrene was selected as that of type2. Moreover, if considering transition of the VOC from the point of similarity, the research method of making the classification and the selection of the representative compound in this study are said to be significant method.

  • PDF

Carbon Nanotubes Doped with Nitrogen, Pyridine-like Nitrogen Defects, and Transition Metal Atoms

  • Mananghaya, Michael R.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.34-46
    • /
    • 2012
  • Dopants and defects can be introduced as well as the intercalation of metals into single wall carbon nanotubes (SWCNTs) to modify their electronic and magnetic properties, thus significantly widening their application areas. Through spinpolarized density functional theory (DFT) calculations, we have systemically studied the following: (i) (10,0) and (5,5) SWCNT doped with nitrogen ($CN_xNT$), (ii) (10,0) and (5,5) SWCNT with pyridine-like defects (3NV-$CN_xNT$), and (iii) chemical functionalization of (10,0) and (5,5) 3NV-$CN_xNT$ with 12 different transition metals (TMs) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, and Pt). Attention was done in searching for the most stable configurations, deformation, calculating the formation energies, and exploring the effects of the doping concentration of nitrogen and pyridine-like nitrogenated defects on the electronic properties of the nanotubes. Also, calculating the corresponding binding energies and effects of chemical functionalization of TMs on the electronic and magnetic properties of the nanotubes has been made. We found out that the electronic properties of SWCNT can be effectively modified in various ways, which are strongly dependent not only on the concentration of the adsorbed nitrogen but also to the configuration of the adsorbed nitrogen impurities, the pyridine-like nitrogenated defects, and the TMs absorbed; due to the strong interaction between the d orbitals of TMs and the p orbitals of N atoms, the binding strengths of TMs with the two 3NV-$CN_xNT$ are significantly enhanced when compared to the pure SWCNTs.

Ex-situ Reductive Dechlorination of Carbon Tetrachloride by Iron Sulfide in Batch Reactor

  • Choi, Kyung-Hoon;Lee, Woo-Jin
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.177-183
    • /
    • 2008
  • Ex-situ reductive dechlorination of carbon tetrachloride (CT) by iron sulfide in a batch reactor was characterized in this study. Reactor scaled-up by 3.5 L was used to investigate the effect of reductant concentration on removal efficiency and process optimization for ex-situ degradation. The experiment was conducted by using both liquid-phase and gas-phase volume at pH 8.5 in anaerobic condition. For 1 mM of initial CT concentration, the removal of the target compound was 98.9% at 6.0 g/L iron sulfide. Process optimization for ex-situ treatment was performed by checking the effect of transition metal and mixing time on synthesizing iron sulfide solution, and by determining of the regeneration time. The effect of Co(II) as transition metal was shown that the reaction rate was slightly improved but the improvement was not that outstanding. The result of determination on the regeneration time indicated that regenerating reductant capacity after $1^{st}$ treatment of target compound was needed. Due to the high removal rates of CT, ex-situ reductive dechlorination in batch reactor can be used for basic treatment for the chlorinated compounds.

Influence of Total Saponin from Korean Red Ginseng on Structural Changes in Phospholipid Membranes and Ghost Erythrocytes (고려홍삼의 총사포닌에 의한 인지질막과 적혈구막의 구조적 변화)

  • Kim, Yuri-A.;Vlasimir, R.Akoev;Tarahovsky, Yuri-S.;Ruslan, Elemesov;Park, Kyeong-Mee;Song, Yong-Bum;Rhee, Man-Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.39-44
    • /
    • 1995
  • Total saponin from Korean red ginseng changed thermodynamic parameters of membranes from dipalmitoylphosphatidylcholine (DPPC) and ghost erythrocytes of human. In liposomes from DPPC, temperature of the main transition (Lb'-La) in liquid-crystalline phase increases by 0.2$^{\circ}C$ in average, but enthalpy does not change. Total saponin at a concentration of smaller than $10^5$% "stabilizes" the timid bilayers. At larger than 0.07 of saponin/DPPC ratio, saponin leads to an exclusion of the bound lipid molecules from the main phase transition into lamella liquid crystalline La-phase. Total saponin influences specifically all erythrocyte membrane transitions in a concentration-dependent manner, i.e. on the structures of all the main membrane skeleton proteins. A high structural specificity of saponin with membrane proteins, could be a base of specificity of physiological response of not only erythrocytes, but also other cells.her cells.

  • PDF

Study on Sludge Concentration Change in Batch Column (Batch Column에서의 슬러지농도변화에 대한 연구)

  • Park, Suk Gyun;Kang, Seon-Hong;Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.443-450
    • /
    • 2006
  • For understanding sludge concentration profile as a function of time, sludge was sampled at each sampling port. When sludge concentration was 3g/L, the vertical sludge concentration distribution was similar to that of 2g/L of sludge concentration. During the early stage of sludge settling, sludge concentration increased remarkably as the sludge interface height in batch column became lower. The higher sludge concentration became, the worse sludge setteability became. Also, the type of sludge settling was influenced with sludge concentration gradient in batch column. In the same concentration, the greater sludge concentration gradient was, the faster sludge interface settled down. And the changing sludge concentrations in a batch settling or a continuous settling were simulated by using the equation of sludge interface height change model.

Velume Phase Transition of Poly (N-isopropylacrylamide-co-sodium methacrylate) Hydrogel Crosslinked with Poly(ethylene glycol) diacrylate (Poly(ethylene glyco1) diacrylate로 가교된 Poly(N-isopropylacrylamide) Hydrogel의 부피 상전이 특성)

  • 김선아;한영아;손성옥;지병철
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.653-660
    • /
    • 2002
  • The volume phase transition of poly(N-isopropylacrylamide) (PNIPAAm) and poly (N-isopropylacrylamide-co-sodium methacrylate) (P (NIPAAm-co-SMA)) hydrogels crosslinked with poly (ethylene glycol) diacrylate (PEGDA) was investigated in consideration of water content and surface area. The volume phase transition temperature of hydrogel was not affected by the concentration of crosslinking agent, which increased over 40$\^{C}$ by incorporating a small amount of SMA. Higher volume phase transition temperature was obtained when PEGAD was used as a crosslinking agent, suggesting that the chain length of crosslinking agent had a significant effect on the volume phase transition temperature. The surface area of PNIPAAm and P (NIPAAm-co-SMA) gels fell off around the volume phase transition temperature, resulting from the fact that the size of pores reduced remarkably in the course of the volume phase transition. Hence, the surface area and the pore size were considered to be important factors indicating the volume phase transition.