• Title/Summary/Keyword: Concentration Transition

Search Result 627, Processing Time 0.029 seconds

Polymorphism of Sulpiride and Its Pharmaceutical Applications ( III ) -Dissolution Kinetics of Sulpiride Polymorphs- (Sulpiride의 Polymorphism 및 그 약제학적(藥劑學的) 연구(硏究) (제3보)(第三報) -Polymorph에 따른 용출속도(溶出速度)-)

  • Lee, Min-Hwa;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.12 no.3
    • /
    • pp.55-63
    • /
    • 1982
  • The dissolution kinetics for polymorphs of sulpiride, the effect of polyethylene glycol 4000 on the dissolution kinetics of sulpiride polymorphs and the dissolution rate difference between the tablets of polymorph form I and form II were investigated. The results could be summerized as followings: 1. The dissolution rates of two polymorphs of sulpiride were significantly different and the thermodynamic parameters calculated from dissolution kinetics were as follows; transition temperature $98^{\circ}C$, enthalpy change, -2.108 kcal/mole, free energy change, -783 cal/mole $(31.0^{\circ}C)$. 2. The dissolution rates of the two polymorphs of sulpiride containing polyethylene glycol 4000 were significantly diefferent in 0.01N HCl but the effect of polyethylene glycol on the dissolution rates of two polymorphs was not significant at low concentration of polyethylene glycol 4000. The study on the effect by stirring speed showed that at lower stirring speed the promotion rate of dissolution of polymorph form I is greater than that of form II. 3. In the case of tablets the dissolution rates of polymorph form I of sulpiride was two fold as compared with the results obtained from form II.

  • PDF

Luminescent Characteristics of Bi Co-doped ZnS:Mn Yellow Phosphors for White Light Emitting Diodes (Bi를 첨가한 백색 LED용 ZnS:Mn 황색형광체의 발광특성)

  • Jung, Jong-Hun;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.46-49
    • /
    • 2011
  • Bi co-doped ZnS:Mn,Bi yellow phosphors for white light emitting diodes were prepared by the conventional solidstate reaction method. The optical and structural properties of ZnS:Mn,Bi phosphors were investigated by x-ray diffraction, scanning electro microscopy and photoluminescence. ZnS:Mn,Bi phosphors showed XRD patterns of hexagonal structure. The photoluminescence of ZnS:Mn,Bi phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn,Bi phosphors was associated with the 4T1 ${\rightarrow}$ 6A1 transition of the Mn2+ ions. The highest photoluminescent intensity of the phosphors under 405 nm and 450 nm excitation was obtained at Bi concentration of 7mol%. The optimum mixing conditions with epoxy and yellow phosphor for white light emitting diodes were observed in a ratio of epoxy:yellow phosphor of 1:3.5. The CIE chromaticity of the white LED at the 1:3.5 ratio was X = 0.3454 and Y = 0.2449.

Polyetherimide/Dicyanate Semi-interpenetrating Polymer Networks Having a Morphology Spectrum

  • Kim, Yu-Seung;Min, Hyun-Sung;Kim, Sung-Chun
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.60-66
    • /
    • 2002
  • The morphology, dynamic mechanical behavior and fracture behavior of polyetherimide (PEI)/dicyanate semi-interpenetrating polymer networks (semi-IPNs) with a morphology spectrum were analyzed. To obtain the morphology spectrum, we disported PEI particles in the procured dicyanate resin containing 300 ppm of zinc stearate catalyst. The semi-IPNs exhibited a morphology spectrum, which consisted of nodular spinodal structure, dual-phase morphology, and sea-island type morphology, in the radial direction of each dispersed PEI particle due to the concentration gradient developed by restricted dissolution and diffusion of the PEI particles during the curing process of the dicyanate resin. Analysis of the dynamic mechanical data obtained by the semi-IPNs demonstrated that the transition of the PEI-rich phase was shifted toward higher temperature as well as becoming broader because of the gradient structure. The semi-IPNs with the morphology spectrum showed improved fracture energy of 0.3 kJ/$m^2$, which was 1.4 times that of the IPNS having sea-island type morphology. It was found that the partially introduced nodular structure played a crucial role in the enhancement of the fracture resistance of the semi-IPNs.

Poly(N-isopropylacrylamide-co-N-vinylpyrrolidone) as a Novel Implant Materials : Preparation and Thermo-Gelling Behavior

  • Nam, Irina;Bae, Jin-Woo;Jee, Kyoung-Soo;Lee, Joon-Woo;Park, Ki-Dong
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.115-121
    • /
    • 2002
  • Synthesis of polymers with controlled thermosensitive properties was carried out by conventional radical copolymerization of N-isopropylacrylamide (NIPAAm) with N-vinylpyrrolidone (NVP) taken as a hydrophilic comonomer. Lower activity of NVP rather than NIPAAm was revealed by gravimetric and $^1$H NMR analysis. Thermosensitive properties of the copolymers were investigated. It was found that aqueous solutions of the copolymers undergo thermo-induced phase transition and become opaque, precipitate or gel with heating. After formation of the gels their significant contraction was observed at storage. Swelling degree and amount of expelled water were measured in dependence on the copolymer composition, temperature and ionic strength of environment medium and concentration of the solution. It was determined that in collapsed state gels exhibit quite high water content. According to physico-chemical properties of the copolymers observed they could be suitable for biomedical application as an injectable implant material.

Study on Nanocomposite Thermoplastic Elastomer Gels

  • Paglicawan Marissa A.;Balasubramanian Maridass;Kim, Jin-Kuk
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.370-370
    • /
    • 2006
  • Thermoplastic elastomer gels, which has molecular networks composed of a microphase-separated multiblock copolymer swollen to a large extent by a low volatility mid-block selective solvent such as white oil have various applications. In this particular study, the effect of several network-forming nanoscale fillers such as two different graphite particles and carbon nanotube on the properties of TPE gels prepared from a microphaseordered poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer with an EB compatible white oil was studied. The linear viscoelastic behavior, sol-gel transition, x-ray diffraction and mechanical properties were discussed. The properties of thermoplastic elastomer gels hybrid with graphite prepared by mixing Poly(styrene-b-ethylene-co-butylene)-b-styrene) with paraffin oil and different amount of expandable graphite were found to increase the mechanical properties at only lower graphite concentration but tends to decrease when paraffin oil/SEBS ratio is lower. The gelation temperature is the same for all TPE gels with different amounts of graphite. Both storage (G') modulus loss (G") modulus of TPE gels slightly increase with addition of graphite.

  • PDF

Poly-Si Thin Film Solar Cells by Hot-wire CVD

  • Lee, J.C.;Chung, Y.S.;Kim, S.K.;Yoon, K.H.;Song, J.S.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1034-1037
    • /
    • 2003
  • Microcrystalline silicon(c-Si:H) thin-film solar cells are prepared with intrinsic Si-layer by hot wire CVD. The operating parameters of solar cells are strongly affected by the filament temperature ($T_f$) during intrinsic layer. Jsc and efficiency abruptly decreases with elevated $T_f$ to $1400^{\circ}C$. This deterioration of solar cell parameters are resulted from increase of crystalline volume fraction and corresponding defect density at high $T_f$. The heater temperature ($T_h$) are also critical parameter that controls device operations. Solar cells prepared at low $T_h$ ($<200^{\circ}C$) shows a similar operating properties with devices prepared at high $T_f$, i.e. low Jsc, Voc and efficiency. The origins for this result, however, are different with that of inferior device performances at high $T_f$. In addition the phase transition of the silicon films occurs at different silane concentration (SC) by varying filament temperature, by which highest efficiency with SC varies with $T_f$.

  • PDF

Physicochyemical Properties of $ZrF_4-Based$ Fluoride Glasses Containing Rare-Earth Ions

  • Ishioka, Noriyuki;Ogawa, Kouji;Arakawa, Tsuyoshi
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.375-378
    • /
    • 1999
  • In tho XRD study of $56ZrF_4 \cdot34BaF_2 \cdot4AIF_3 \cdot(6-x)LaF_3 \cdotxLnF_3$ glassdLn=Ce, Nd, Gd, Th), halo pattern charactarktic fo an amorphous sample appeared. When the halo peak angle ($\theta_p$) was converted into a wavenumber with $Qp=4\pi sinG\pi/\lambda(\lambda$ is the wavolongth of the radialion used), it was found that the Qp values varied almost liuearly with the concentration 01 $LnF_3$. The emissiou spect1.a of $Ce^{3-}$-containing fluoride glasses nnder 273 nm excitation had a peak maximum at ea. 300 nm $(Ce^{3+}$ 5d-4f- transition). The maximal intensity of the fluorescence was observed when the $CeF_3$, content was extremely low (ca. 1 mol%j. DTA measurement revealed tbat these fluoride glasses had two crystallization temperatures. In $56ZrF_4. 34BaF_2. 4NF_3. (6-x)LaF_3 .xNdF_3$ glasses, the actmation energies of crystallization obtained from a Kssinger plot were 1.7 and 5.0 eV for the glass with x=2, and 1.9 and 5.6 eV for the glass with x=4.

  • PDF

Mass Balance of Perfluorooctane sulfonates in a Semi-enclosed Bay, Korea

  • Heo, Min Ji;Roh, Kyong Joon;Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.969-979
    • /
    • 2020
  • A numerical simulation was conducted on perfluorooctane sulfonate (PFOS) in the Gwangyang Bay using a multi-box model to estimate the transport of organic chemicals in the coastal environment. The results of the sensitivity analysis on dissolved PFOS and PFOS in Particulate Organic Carbon (POC) indicate that they were most significantly influenced by the adsorption rate, desorption rate, and sinking velocity coefficients. PFOS in phytoplankton was found to be sensitive to bio-concentration and the excretion rate. The results of the mass balance indicate that the standing stocks of PFOS in water, POC, and phytoplankton are 345.55 g, 63.76 g, and 0.11 g, respectively, in the inner part and 149.90 g, 27.51 g, and 0.05 g, respectively, in the outer part. Considering flux in the inner part, adsorption to POC had the highest value among transition paths. The next highest were desorption, outflow to the outer part, and inflow to the inner part. Outflow into the open sea was found to have the highest value for the outer part.

Aggregation of Methylene Blue on the L-${\alpha}$-lecithin Bilayer Membrane (L-${\alpha}$-lecithin 이중층막에서 Methylene Blue의 회합)

  • Lee, Hong;Lee, Hoo-Seol
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.612-616
    • /
    • 1991
  • Metachromatic behavior of methylene blue (MB) in solutions of aqueous sodium dodecyl sulfate (SDS), chondroitin sulfate and L-${\alpha}$-lecithin vesicle at $18~52^{\circ}$C has been studied by absorption spectroscopy. MB was clustered in the matrix of the vesicle with high concentration of L-${\alpha}$-lecithin. The metachromasy of MB was found to be independent of phase transition temperature of vesicles. These results suggest that the dyes were aggregated on the hydrophilic surfaces of vesicle. In the vesicular system, the metachromatic effect of MB was dramatically decreased in the presence of hexadecyltrimethylammonium bromide (CTAB) than SDS. It is estimated that the intercalation site of these surfactants on vesicle surfaces was different, that is, the intercalation of CTAB was more effective than that of SDS.

  • PDF

Hydrogen Plasma Characteristics for Photoresist Stripping Process in a Cylindrical Inductively Coupled Plasma

  • Yang, Seung-Kook;Cho, Jung Hee;Lee, Seong-Wook;Lee, Chang-Won;Park, Sang-Jong;Chae, Hee-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.387-394
    • /
    • 2013
  • As the feature size of integrated circuits continues to decrease, the challenge of achieving an oxidation-free exposed layer after photoresist (PR) stripping is becoming a critical issue for semiconductor device fabrication. In this article, the hydrogen plasma characteristics in direct plasma and the PR stripping rate in remote plasma were studied using a $120{\Phi}$ cylindrical inductively coupled plasma source. E mode, H mode and E-H mode transitions were observed, which were defined by matching the $V_{rms}$ and total impedance. In addition, the dependence of the E-H mode transition on pressure was examined and the corresponding plasma instability regions were identified. The plasma density and electron temperature increased gradually under the same process conditions. In contrast, the PR stripping rate decreased with increasing proportion of $H_2$ gas in mixed $H_2/N_2$ plasma. The decrease in concentration of reactive radicals for the removal of PR with increasing $H_2$ gas flow rate suggests that NH radicals have a dominant effect as the main volatile product.