• Title/Summary/Keyword: Concentration

Search Result 57,788, Processing Time 0.064 seconds

Effects of Freezing Conditions on the Concentration-Efficiency in the Progressive Freeze-Concentration (Progressive Freezing에 의한 동결 농축법에 있어서의 농축효과에 미치는 동결조건의 영향)

  • 배승권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.984-989
    • /
    • 1995
  • The concentration-efficiencyh of blue dextran solution in the progressive freeze-concentration was related to the freezing conditions such as the freezing speed and the stirring speed in the solution phase. From the theoreticla balance equation of heat and mass transfer at freezing front, the relationship between the freezing conditions and the ice structure at freezing front was drived. A high freeze-concentration efficiency was obtained under the operating conditions represented by a low speed of freezing and a high speed of stirring. The operating conditions were related to a smooth solid-liquid interface and these results were well explained by the theoretical equation. Effect of the solute component size on the concentration efficiency in the progressive freezeconcentration was also tested. The concentration efficiency of latex particles showed a lower value than that of blue dextran, however, its difference was insignificant.

  • PDF

Influence of Heavy Metal on Riparian Vegetation in Downstream Areas of Disused Metal Mines (폐금속광산지역의 하천퇴적물에서 중금속이 식물에 미치는 영향에 관한 연구)

  • Ahn, Tae Woong;Lee, Joung An;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.209-218
    • /
    • 2009
  • The purpose of this study was to accumulation of the heavy metals by riparian vegetation throughout analysis of the heavy metal concentration in riparian vegetation, water, and sediment near mine drainage. According to analyzing concentration of the heavy metals in riparian vegetation, water, and sediment the heavy metal was indicated at the leaf significantly. Compared with the concentration of sediment soil, the maximum concentration of the As, Cd, CN, Pb, Zn was higher 2.6, 2.6, 25, non-detect, and 15 times in leaf. Also those concentration have 9.6, 16.6, 25, 1.6, and 25 times in root. As the results, the author can know the sediment has a very relative to vegetation in mine drainage. because, the increasing of concentration of heavy metal in sediment gives the more accumulative concentration of heavy metal in vegetation. Compared with the concentration of conta minated site and non-contaminated site. As, Cd, CN, Pb, Zn the maximum concentration in sediment soil was higher 5.7, 258.1, 10.9, 370.0, and 298.3 times respectively. In case of vegetation, the maximum concentration of the As, Cd, CN, Pb, Zn was higher 5.6, 62.3, 5.0, non-detect, and 30.6 times in leaf. Also those concentration have 8.5, 63.3, 2.6, 60.7, and 62.1 times in root. In this study, the author can surmise that there indicated a lot of adsorption with the heavy metal concentration in contaminated mine drainage.

A Colorimetric Glucose Assay via Concentration Gradient Paper Chip (종이기반 농도 구배 형성 칩을 통한 포도당 발색 반응 검사)

  • Kim, Taehoon H.;Shin, Hyun Young;Lee, Yun-Il;Tae, Ki-Sik;Kim, Minseok S.
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.302-307
    • /
    • 2017
  • This paper presents a paper-based concentration gradient chip to analyze colorimetric glucose assay. The paper-based concentration gradient chip was fabricated through a wax patterning technique that can design the fluidic channel by selectively printing hydrophobic and hydrophilic areas. Afterwards, glucose and dilution solutions were loaded into the inlet of a concentration gradient chip and each solution was then mixed sequentially at mixing channel. Finally, concentration gradient was formed at each outlet of the chip. To measure the glucose concentration of the solution in outlets, we conducted colorimetric glucose assay with fixed concentration of glucose solution (0, 5, 10, 15 and 20 mM) and obtained normalized intensity. Subsequently, glucose concentrations of the outlets were calculated by substituting the normalized intensity to linear regression function based on the normalized intensity of fixed glucose concentration. Finally, the concentration gradient of glucose was formed on the chip with the result of colorimetric assay. The concentration gradient paper chip has the potential to accurately analyze unknown glucose concentration.

A Study on Contaminant Emission and Combustion of Anthracite-Bituminous Coal Blend in a Fluidized Bed Coal Combustor (유동층 연소로에서 유$cdot$무연탄 혼합 연소시 대기오염물질 배출에 관한 연구)

  • 조상원;정종현;손병현;김영식;오광중
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.28-36
    • /
    • 1996
  • The objects of this study were to investigate emissions of air pollutant the particles as well as the combustibility of the low grade domestic anthracite coal and imported high-calorific bituminous coal in the fluidized bed coal combustor. The production of air pollution from anthracite-bituminous coal blend combustion in a fluidized bed coal combustor was evaluated. The effects of air velocity and anthracite fraction on the reaching time of steady state condition was also evaluated. We used coal samples the domestic low grade anthracite coal with heating value of 2,010 kcal/kg and the imported high grade bituminous coal with heating value of 6,520 kcal/kg. The experimental results are presented as follows. The time of reaching to steady state was affected by the temperature variation. The steady state time was about 120 minute at 0.3 m/s which was the fastest. It has been found that $O_2$ and $CO_2$ concentration were reached steady state at about 100 minute. As the height of fluidized bed becomes higher, the concentration s of $SO_2$ and $NO_x$ mainly increased. The concentration of freeboard was the highest and emission concentration was diminished. Also, as anthracite fraction increased, the emission of $SO_x$ concentration was increased. But, it has been found that the variation of $NO_x$ concentration with anthracite fraction was negligible and the difference of emission concentration according to air flow rates was negligible, too. It has been found that $O_2$ concentration decreased and $CO_2$ concentration increased as the height of fluidized bed increased. As anthracite fraction increased, the mass of elutriation particles increased, and $CO_2$ concentration decreased. Also, as air velocity increased, $O_2$ concentration decreased and $CO_2$ concentration increased. Regardless-of anthracite fraction and flow rate, the combustible weight percentage in elutriation particles were high in the case of fine particles.

  • PDF

A Comparative Analysis on Concentration of Pollutants in Housing Indoor-Air between Winter and Summer (주택 실내 공기중 오염물질 농도의 동절기와 하절기 비교 분석)

  • Nam, Ki-Cheul;Lee, Young-Han;Choi, Bong-Seok
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.125-131
    • /
    • 2017
  • Purpose: The study is to measure concentrations of indoor air pollutants in housing and to analyze the characteristics of pollutants in housing indoor-air between summer and winter comparatively. The research result could be used as data for public health through indoor air quality management of existing housing and more as a reference for new housing. Method: It was investigated 24 middle class housings of metropolitan area in winter which have been built for the past 30 years. Concentration of HCHO, TVOC was investigated in living room at morning and night and concentration of $CO_2$ was investigated in living room and master bedroom at morning and night. SKT100-X5 was used for concentration of HCHO, TVOC and ZGm053UK for concentration of $CO_2$. The characteristics of HCHO, TVOC, $CO_2$ concentration in winter were analyzed and then the concentrations in winter were analyzed the concentrations in summer being preceding research comparatively. Result: Average concentration of TVOC in winter was 2.7 times more than that of TVOC in summer, average concentration of HCHO in winter was about 2.0 times more than that of HCHO in summer. Average concentration of $CO_2$ in the morning at living room in winter was 1.3 times more than that of $CO_2$ in summer. Average concentration of $CO_2$ in the morning at master bedroom in winter was 1.1 times more than that of $CO_2$ in summer. Average concentration of TVOC was 1.31 times more than that of HCHO and standard deviation of that was 1.73 times higher. Average concentration of $CO_2$ was almost nearly close or over to 1,000ppm being criteria of the Ministry of Environment.

Relative Contribution of the Oxidation of VOCs to the Concentrations of Hydroxyl (OH) and Peroxy Radicals in the Air of Seoul Metropolitan Area (서울에서의 VOCs의 히드록실 및 페록시 라디칼 농도에 대한 상대적 기여도 연구)

  • Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.779-790
    • /
    • 2006
  • This study examines relative contributions of volatile organic compounds (VOCs) to the formation of hydroxyl (OH) and peroxy radicals such as $HO_2$ and $RO_2$ during the intensive sampling period (Jun. $1{\sim}30$, 2004) in the air of Seoul metropolitan area. As to the contribution of VOCs to $HO_x$ levels, the impact of individual VOC concentration change on $HO_2$ concentration change was more than an order of magnitude higher than that on OH concentration change during the study period. The contribution of change in isoprene concentration to $HO_2$ concentration change was 38 times higher than OH and that in the concentration of alkene compounds to $HO_2$ concentration change was 31 times higher than OH. Moreover, the concentration changes of isoprene and aromatic compounds (AROM) played significant roles in $HO_x$ concentration changes. On the other hands, aldehydes (ALD2) and alkanes (ALKA) showed anti-correlation (negative) in $HO_x$ concentration changes with low contribution ($-4{\times}10^{-3}$ pptv/ppbv (OH) and $-58{\times}10^{-3}$ ($HO_2$) for ALD2; $-1{\times}10^{-3}$ (OH) and $-15{\times}10^{-3}$ ($HO_2$) for ALKA). Unlike other VOCs, $C_2H_6$ and $C_3H_8$ showed positive or negative contribution to peroxy radicals, depending on ambient air conditions. The contribution of VOC concentration changes to changes in $CH_3O_2$ and $RO_2$ concentration showed similar pattern to $HO_x$ contribution.

Effect of Initial Toluene Concentration on the Photooxidation of Toluene -NOx- Air Mixture - I. Change of Gaseous Species (초기 톨루엔 농도가 톨루엔 -NOx- 공기 혼합물의 광산화 반응에 미치는 영향 - I. 가스상 물질의 변화)

  • Lee Young-Mee;Bae Gwi-Nam;Lee Seung-Bok;Kim Min-Cheol;Moon Kil-Choo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 2005
  • An experimental investigation of the gas-phase photooxidation of toluene-NO$_{x}$-air mixtures at sub-ppm concentrations has been carried out in a 6.9 m3, indoor smog chamber irradiated by blacklights. Measured parameters in the toluene-NO$_{x}$ experiments included $O_3$, NO, NO$_2$, NO$_{x}$, CO, SO$_2$ toluene, and air temperature. The initial toluene concentration ranged from 225 ppb to 991 ppb and the initial concentration ratio of toluene/NO$_{x}$ in ppbC/ppb was in the range of 5~20. It was found that the variation of gaseous species with irradiation time caused by the photooxidation of toluene-NO$_{x}$-air mixtures depended on the initial toluene concentration for similar concentration ratio of toluene/NO$_{x}$. The dependency of initial toluene concentration on the photooxidation of toluene-NO$_{x}$-air mixtures for toluene/NO$_{x}$=5~6 seemed to be opposite to that for toluene/NO$_{x}$=10~11. The arriving time at maximum ozone concentration depended on both initial toluene concentration and initial concentration ratio of toluene/NO$_{x}$. However, the maximum concentration of ozone formed by photooxidation depended only on the initial toluene concentration.luene concentration.

Index Analysis Approach to Identifying Accident Concentration Level of Korean Industries (국내 산업재해집중수준 확인을 위한 지표분석)

  • Lee, Bong Keun;Suh, Yongyoon;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.59-65
    • /
    • 2020
  • For monitoring the status of industrial accidents, many statistical indexes have been developed and applied such as fatal rate, frequency rate, and severity rate. These accident indexes are measured by frequency and loss time according to the accidents in the individual industry level. However, it is less considered to use the index of identifying the industrial concentration of accidents in the holistic view. Thus, this study aims to suggest the accident concentration level among domestic industries through index analysis. The concentration level of industrial accidents is calculated by the accident composition of sub-industries. This concentration level shows whether an industry is comprised of a few sub-industries generating more accidents or an industry consists of sub-industries having the similar number of accidents. To this end, the concentration rate (CR) and concentration index (CI) are proposed to take a look at the industry composition of accidents by embracing the concept of market concentration indexes such as Hirschman-Herfindahl Index. As for the case study, four industries of mining, manufacturing, transportation, and other business (usually service) are analyzed in terms of indexes of accident rate, death(fatality) rate, and CR and CI of accident and death. Finally, we illustrate the positioning map that the accident concentration level is compared with the traditional accident frequency level among industries.

Characteristics of In-cabin PM2.5 Concentration in Seoul Metro Line Number 2 in Autumn (서울시 지하철 2호선의 가을철 객실 PM2.5 농도의 특성)

  • Shin, Hyerin;Jung, Hyunhee;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.186-191
    • /
    • 2019
  • Objectives: Subway is one of the most common transportation modes in Seoul, Korea. The objectives of this study were to determine characteristics of in-cabin $PM_{2.5}$ concentration in Seoul Metro Line Number 2 and to identify factors of the $PM_{2.5}$ concentration. Methods: In-cabin $PM_{2.5}$ concentrations in Seoul Metro Line Number 2 were measured using real-time monitors and the factors affecting $PM_{2.5}$ concentration in cabin were observed. Linear regression analysis of in-cabin $PM_{2.5}$ concentration and indoor/outdoor (I/O) ratio were performed. Results: In-cabin $PM_{2.5}$ concentration was associated with the in-cabin $PM_{2.5}$ concentration in previous station. In-cabin $PM_{2.5}$ concentration was correlated with ambient $PM_{2.5}$ concentration and associated with underground station with control of the in-cabin $PM_{2.5}$ concentration in previous station. I/O ratio increased as the number of passengers increased and when passing through the underground station with control of I/O ratio in previous station. Conclusion: In-cabin $PM_{2.5}$ concentration was affected by ambient $PM_{2.5}$ concentration. Therefore, management of in-cabin $PM_{2.5}$ concentrations should be based on outdoor air quality.

Regional Characteristics of Particle Size Distribution of PM10 (미세먼지 입경농도 분포의 지역별 특성)

  • Lee, Yong-Ki;Lee, Ki-Jong;Lee, Jae-Seong;Shin, Eun-Sang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.666-674
    • /
    • 2012
  • The purpose of this study is to propose management strategies to lower the level of $PM_{10}$ concentration. First, this study analyzes the characteristics of particle sizes in three different areas, the residential, the roadside, and the industrial areas. Second, it has examined the size of particles which can influence on the increase of $PM_{10}$ concentration level. The distribution of particle size for $PM_{10}$ concentration was not different by regions. The highest portion in the observed $PM_{10}$ is near $0.3{\mu}m$. In addition, both near $2.5{\mu}m$ and near $5.0{\mu}m$ are found higher in portion. The fractions of $PM_{1.0}$ and $PM_{2.5}$ in $PM_{10}$ are 68.2% and 75.8% respectively. The fraction of $PM_{1.0}$ in $PM_{2.5}$ is 89.8%. The particle diameters contributed to the increase of $PM_{10}$ concentration are different by regions. In the residential area, the sizes of near $0.6{\mu}m$ and near $3.3{\mu}m$ particles are found to be the cause for the increase of $PM_{10}$ concentration level. However the particle sizes for the increase of $PM_{10}$ concentration level are $0.8{\mu}m$ and $0.5{\mu}m$ in roadside and industrial area respectively. Therefore, fine particles are found as the key factors to raise $PM_{10}$ concentration level in the two areas, while both fine and coarse particles are in the residential areas. When examined the $PM_{10}$ concentration level change, it was categorized by two different time zones, the high concentration level time and the lower concentration time. In high concentration time, the $PM_{10}$ concentration has increased in the morning in the residential and roadside areas. On the contrary, the level has increased in the evening in the industrial area. In low concentration time, the level of $PM_{10}$ concentration in the roadside area is significantly higher in the morning than the concentration level of other times. There is no significantly different concentration level found in the both residential and industrial areas throughout the day.