• Title/Summary/Keyword: Concentrated flux

Search Result 102, Processing Time 0.011 seconds

Efficiency Improvement for Concentrated Flux IPM Motors for Washing Machines

  • Yoon, Keun-Young;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1277-1282
    • /
    • 2014
  • Concentrated flux interior permanent magnet (CFIPM) motors have the advantage that their utilization of flux linkage is more efficient than that of general IPM motors and CFIPM motors are suitable for washing machine motors, which demand low-speed, high-torque specifications. However, low efficiency occurs in the low-speed high-torque mode considering the high-speed operation for spin mode. This paper proposes a magnet overhang structure between the rotor core that reduces leakage flux and improves efficiency for a CFIPM in wash mode. Optimization of the 3D design of magnet overhang structures is performed to improve the efficiency with the same quantity of permanent magnets. The validity of the optimal design is experimentally verified through the fabrication of prototypes.

Improvement of Output Characteristics and Acoustic Noise Characteristics for Single Phase Induction Motor with Concentrated Winding (집중권 방식 단상유도기의 출력 및 소음 특성 개선)

  • Chae, Myong-Gi;Cha, Hyun-Rok;Yun, Cheol-Ho;Jung, Tae-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.693-698
    • /
    • 2007
  • In general the distributed winding method is applied for induction motor in order to have the sinusoidal flux distribution. Recently the concentrated winding method is the interested technique so as to lower the material cost portion of copper coil. In the concentrated winding induction motor the harmonic flux and the torque deterioration by it would be occurred. To restrain ill effect of harmonic flux distribution by concentrated winding, the skew of rotor conduction bar is very important design variable. This study is focused on the optimal design of rotor bar's skew and winding turns for concentrated winding induction motor. In this study, the control method of harmonic parasitic torque in concentrated winding induction motor is proposed and validated its practicality through the experiment. As a result of this study, large skew angle which was not conventional in distributed winding was favorable in the concentrated winding induction motor. The concentrated winding induction motor which is designed per the proposed method of this study can be manufactured more cost effectively than conventional distributed winding.

Concentrated Solar Flux Modeling for the Heat Transfer Analysis of Multi-Channeled Solar Receivers (다채널 태양열 흡수기의 열전달 해석을 위한 집광 열유속 모델링)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer analysis. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15mm channel length for the channel radius smaller than 1.5mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the channel entrance region is over predicted while the light penetrates more deeply into the channel. Once the presented results are imported into the heat transfer analysis, one could examine effects of material property and geometry of the receiver on air temperature profiles.

Solar Flux Calculation for Heat Transfer Modeling of Volumetric Receivers (체적식 흡수기의 열전달 모델링을 위한 태양 열유속 계산)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.223-228
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer modeling. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15 mm charmel length for the charmel radius smaller than 1.5 mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the charmel entrance region is overpredicted while the light penetrates more deeply into the charmel. The developed method will help understand the solar flux when only a part of concentrated light is of interest. Furthermore, if the presented results are applied for heat transfer modeling of multi-channeled volumetric solar receivers, one could examine effects of receiver charmel properties and shape on air temperature profiles.

  • PDF

Effect of Slot Opening on the Cogging Torque of Fractional-Slot Concentrated Winding Permanent Magnet Brushless DC Motor

  • Yan, Jianhu;Zhang, Qiongfang;Feng, Yi
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.78-82
    • /
    • 2016
  • Cogging torque will affect the performance of a permanent magnet Brushless DC Motor (BLDCM), thus the reduction of cogging torque is key for BLDCM optimization. In this paper, the phase shifting of cogging torque for a fractional-slot concentrated winding BLDCM is analyzed using the Maxwell tensor method. Moreover, a 9-slot 10-pole concentrated winding BLDCM driven by ideal square waveform is studied with the finite element method (FEM). An effective method to reduce the cogging torque is obtained by adjusting the slot opening. In addition, the influences of different slot openings on back electromotive force (back-EMF), air gap flux density and flux linkage are investigated and experimentally validated using the prototype BLDCM.

Rotor Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 설계)

  • Park, Jung-Min;Lee, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.623-627
    • /
    • 2006
  • This paper deals with the optimum rotor design solution on torque ripple reduction for a SynRM with concentrated winding using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with finite element method (FEM)and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Comparisons are given with characteristics of a SynRM according to flux barrier number, flux barrier width variation, respectively.

Modeling of a Non-contact Type Precision Magnetic Displacement Sensor (비접촉식 정밀 변위 측정용 자기센서 모델링)

  • Shin, Woo-Cheol;Hong, Jun-Hee;Lee, Kee-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.42-49
    • /
    • 2005
  • Our purpose is to develop a precision magnetic displacement sensor that has sub-micron resolution and small size probe. To achieve this, we first have tried to establish mathematical models of a magnetic sensor in this paper. The inductance model that presents basic measuring principle of a magnetic sensor is based on equivalent magnetic circuit method. Especially we have concentrated on modeling of magnetic flux leakage and magnetic flux fringing. The induced model is verified by experimental results. The model, including the magnetic flux leakage and flux fringing effects, is in good agreement with the experimental data. Subsequently, based on the augmented model, we will design magnetic sensor probe in order to obtain high performances and to scale down the probe.

Comparative Study of Dual-airgap Flux Switching and Spoke-type Interior Permanent Magnet Machines with Phase-group Concentrated-coil Windings (상 그룹 집중권 권선을 갖는 2중 공극 플럭스 스위칭기기와 스포크타입 매입형 영구자석 기기의 비교 연구)

  • Zhao, Wenliang;Kwon, Byung-il
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.680-681
    • /
    • 2015
  • This paper proposes a comparative study of dual-airgap flux switching permanent magnet (FSPM) and spoke-type interior permanent magnet (S-IPM) machines equipped with phase-group concentrated-coil (PGCC) windings. Both of the investigated machines are the same size and material amounts which are compared at the same operating conditions. All the relevant machine performance including back electromotive force (EMF), cogging torque, and electromagnetic torque are analyzed by a 2-D time-stepping finite element method (FEM).

  • PDF

Rotor Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 설계)

  • Park, Jung-Min;Kim, Sung-Il;Hong, Jung-Pyo;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.669-670
    • /
    • 2006
  • This paper deals with the optimum rotor design solution on torque ripple reduction for a SynRM with concentrated winding using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with finite element method (FEM)and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Comparisons are given with characteristics of a SynRM according to flux barrier number, flux barrier width variation, respectively.

  • PDF

Numerical Investigation on Permanent-Magnet Eddy Current Loss and Harmonic Iron Loss for PM Skewed IPMSM

  • Lim, Jin-Woo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.417-422
    • /
    • 2011
  • This paper presents the characteristics of PM eddy current loss and harmonic iron loss for PM step-skewed Interior Permanent Magnet Synchronous Motor (IPMSM) with concentrated windings and multi-layered PM under the running condition of maximum torque per ampere (MTPA) and flux-weakening control. In particular, PM eddy current loss and harmonic iron loss in IPMSM have been numerically computed with three-dimensional Finite Element Analysis (3D FEA), whereby IPMSM with concentrated windings and multi-layered PM has been designed to identify the optimized skew angle contributing to the reduced PM eddy current loss and torque ripples, while maintaining the required average torque. Furthermore, numerical investigation on PM eddy current loss and iron loss at MTPA and flux-weakening control has been carried-out in terms of PM step-skew.