• 제목/요약/키워드: Concentrated Force

검색결과 354건 처리시간 0.029초

Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • 제9권6호
    • /
    • pp.521-538
    • /
    • 2020
  • The present study is concerned with the thermoelastic interactions in a two dimensional homogeneous, transversely isotropic thermoelastic solid with new modified couple stress theory without energy dissipation and with two temperatures in frequency domain. The time harmonic sources and Hankel transform technique have been employed to find the general solution to the field equations.Concentrated normal force, normal force over the circular region, thermal point source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. Numerically simulated results are depicted graphically to show the effect of angular frequency on the resulted quantities.

디더 운동이 캡슐형 내시경의 마찰계수 감소에 미치는 영향 (Influence of Dither Motion on the Friction Coefficient of a Capsule-type Endoscope)

  • 홍예선;최민준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1068-1073
    • /
    • 2005
  • Development of a locomotive mechanism for the capsule type endoscopes will largely enhance the ability to diagnose disease of digestive organs. In connection with it, most of the researches have focused on an installable locomotive mechanism in the capsule. In this paper, it is introduced that the movement of a capsule type endoscope in digestive organ can be manipulated by magnetic force produced outside human body. Since the magnetic force is provided by permanent magnets, no additional power supply to the capsule is required. Using a robotic manipulator for locating the external magnet, the capsule motion control system can cover the whole human digestive organs. This study is particularly concentrated on dither motion effect to improve the mobility of capsule type endoscope. It was experimentally found out that the friction coefficient between the capsule and digestive organ can be remarkably reduced by superposing yawing or rolling dither motion on the translatory motion. In this paper, the experimental results obtained while the direction, amplitude and frequency of sinusoidal dither motion were changed are reported.

  • PDF

고속가공용 엔드밀공구의 형상변화에 의한 성능평가 (Machinability evaluation according to variation of tool shape in high speed machining)

  • 강명창;김정석;이득우;김광호;하동근
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.393-398
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining in not close behind that of machine tool. In this study, several types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge, rake angle and relief angle. Machinability is measured by cutting force, tool life, tool wear, chip shape and surface roughness according to cutting length. 3-axis cutting forces are acquired from the invented tool dynamometer for high speed machining. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. By above results, it is suggested the endmill tool with $45^{\circ}$ helix angle, 6 cutting edge, $-15^{\circ}$ rake angle and $12^{\circ}$ relief angle be suitable for high speed machining

  • PDF

Simplified analytical model for flexural response of external R.C. frames with smooth rebars

  • Campione, Giuseppe;Cannella, Francesco;Cavaleri, Liborio;Monaco, Alessia
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.531-542
    • /
    • 2018
  • In this paper an analytical model in a closed form able to reproduce the monotonic flexural response of external RC beam-column joints with smooth rebars is presented. The column is subjected to a constant vertical load and the beam to a monotonically increasing lateral force applied at the tip. The model is based on the flexural behavior of the beam and the column determined adopting a concentrated plasticity hinge model including slippage of the main reinforcing bars of the beam. A simplified bilinear moment-axial force domain is assumed to derive the ultimate moment associated with the design axial force. For the joint, a simple truss model is adopted to predict shear strength and panel distortion. Experimental data recently given in the literature referring to the load-deflection response of external RC joints with smooth rebars are utilized to validate the model, showing good agreement. Finally, the proposed model can be considered a useful instrument for preliminary static verification of existing external RC beam-column joints with smooth rebars for both strength and ductility verification.

전자기력 자유벌지 실험을 위한 성형코일 설계 및 3-D 해석비교 (Design of a Free Bulge Test Coil Using Electromagnetic Forces and Comparison between Experimental and Numerical Results)

  • 김홍교;노학곤;강범수;김정
    • 소성∙가공
    • /
    • 제23권7호
    • /
    • pp.431-438
    • /
    • 2014
  • For electromagnetic forming(EMF) the most important feature is a forming coil which creates the electromagnetic force(Lorentz force), using current density and a magnetic field. Most previous papers have concentrated on the final configuration of the blank or the efficiency of EMF process. Studies focused on the design parameters affected by the forming coil performance have not been conducted. In order to design a suitable forming coil for an object, the current study uses LS-DYNA EM-Module to not only optimize the coil but also to examine the effect of coil performance. By this method a suitable forming coil was made and tested to determine whether or not good formability was achieved in a free bulge test Numerical analysis was also used. The workpiece was Al 1100-O with a thickness of 1.27mm and the coil was made from copper CW004A, which has good electrical conductivity and is suitable for electrical components.

Dynamic characteristics of elastic beams subjected to traffic loads

  • Tang, Chia-Chih;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제13권2호
    • /
    • pp.211-230
    • /
    • 2002
  • The objective of this study is to investigate the dynamic behavior of elastic beams subjected to moving loads. Although analytical methods are available, they have limitations with respect to complicated structures. The use of computer technology in recent years is an effective way to solve the problem; thus using the latest technology this study establishes a finite-element solution procedure to investigate dynamic behaviors of a typical elastic beam having a set of constant geometric properties and various span lengths. Both the dead load of the beam and traffic load are applied in which the traffic load is considered a concentrated moving force with various traveling passage speeds on the beam. Dynamic behaviors including deflection, shear, and bending moment due to moving loads are obtained by both analytical and finite element methods; for simple structures, they have an excellent agreement. The numerical results show that based on analytical methods the fundamental mode is good enough to estimate the dynamic deflection along the beam, but is not sufficient to simulate the total response of the shear force or the bending moment. The linear dynamic behavior of the elastic beams subjected to multiple exciting loads can easily be found by linear superposition, and the geometric nonlinear results caused by large deformation and axial force of the beam are always underestimated with only a few exceptions which are indicated. In order to make the results useful, they have been nondimensionalized and presented in graphical form.

코어 위치 변화에 따른 비틀림 초고층 구조물의 동적응답분석 (Dynamic Response Analysis of Twisted High-Rise Structures according to the Core Location Change)

  • 채영원;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.17-24
    • /
    • 2022
  • Currently, the construction trend of high-rise structures is changing from a cube-shaped box to a free-form. In the case of free-form structures, it is difficult to predict the behavior of the structure because it induces torsional deformation due to inclined columns and the eccentricity of the structure by the horizontal load. For this reason, it is essential to review the stability by considering the design variables at the design stage. In this paper, the position of the weak vertical member was analyzed by analyzing the behavior of the structure according to the change in the core position of the twisted high-rise structures. In the case of the shear wall, the shear force was found to be high in the order of proximity to the center of gravity of each floor of the structure. In the case of the column, the component force was generated by the axial force of the outermost beam, so the bending moment was concentrated on the inner column with no inclination.

유한요소 분석을 통한 심미적 교정 브라켓의 응력 및 구조분석에 관한 연구 (STRESS DISTRIBUTION IN ESTHETIC ORTHODONTIC BRACKETS : AN ANALYSIS USING THE FINITE ELEMENT METHOD)

  • 이원유;안주삼;박영철;박명균;손홍범;정시동
    • 대한치과교정학회지
    • /
    • 제28권1호
    • /
    • pp.43-49
    • /
    • 1998
  • 본연구는 유한요소 분석법의 사용으로 세가지 형태의 브라켓에 tipping과 torquing force를 부여하여 응력분포를 알아보고 또한 스테인레스 스틸과 세라믹의 재질을 임의 설정하여 응력 분포를 알아보아 생 역학적으로 우수한 브라켓을 디자인 하는 데 기초가 되기위해 수행되었다. 선정된 세가지 브라켓은 A:Transcend(Unitek) B:Signature(RMO) C:PAW(Plane Arch Wire appliance) 이었다. 철선은 0.0175x0.025 스테인레스 스틸과 C형은 새롭게 고안된 마름모꼴 철선이 이용되었다. tipping force는 4.27N을 브라켓의 wire slot의 gingival wall의 mesial surface와 대각선으로 대칭되는 면에 각각의 node에 분력의 형태로 작용시켰다. torquing force는 couple force의 형태로 32.858N을 19.7도 회전하였고 bracket C형은 동량의 힘을 11.3도 회전하여 X와 Y의 방향으로 분력의 형태로 나누어 해석하였고 von Mises stress(최대상당응력)가 각 브라켓에서 기록되었다. 이에 다음과 같은 결론을 얻었다. 첫째, 유한요소 해석을 통해 브라켓과 wire slot을 실제로 제작하지 않고도 각각의 재료에 따른 응력분포를 예측할 수 있었다. 둘째, 응력의 집중부위는 Tipping시 브라켓 A, B, C모두 유사하게 나타났는데 브라켓 wire slot의 gingival wall과 mesial surface가 만나는 부위와 wire slot의 incisal wall과 distal surface가 만나는 부위였다. Torquing시 wire slot의 길이 방향을 따라 넓게 분포되었고 gingival wall과 협면으로 이행되는 모서리 그리고 incisal wall내면에 집중되었다. 셋째, 브라켓에 작용하는 응력은 Tipping에 의한 것보다는 Torquing에 의한 영향이 더 큼을 알수 있었으며 Torquing force를 기준으로 브라켓을 설계하는 것이 바람직한 것으로 판단되었다. 넷째, 브라켓의 형상과 함께 재료의 변화가 응력감소에 영향을 미치는 것으로 사료되므로 브라켓 제작시 한가지 재료보다 응력이 많이 받는 부위는 다른 재료를 사용하여 응력의 분포를 줄일수도 있음을 알수있었다. 다섯째, 사용하기에 용이하고 운용이 효율적일 것으로 판단되는 브라켓C형(PAW브라켓)은 응력집중현상이 다른 두 브라켓보다 크게 나타났으므로 이의 제작시 기계적 성질이 우수한 재료를 사용해야 할 것으로 사료되었다.

  • PDF

상악 제1소구치에서 전부도재관의 finish line 형태에 따른 파절강도와 응력 분포에 관한 연구 (Fracture Resistance and Stress Distribution of All Ceramic Crowns with Two Types of Finish Line on Maxillary First Premolar)

  • 이상권;동진근
    • 구강회복응용과학지
    • /
    • 제19권3호
    • /
    • pp.219-237
    • /
    • 2003
  • he purpose of this study was to compare the fracture resistance of the IPS Empress ceramic crown with 1.0mm width rounded shoulder, which is usually recommended in all ceramic crown, and 0.5mm width chamfer finish lines on the maxillary first premolar. 30 sound maxillary first premolars were selected and then storaged in 5% NaOCl and saline. 15 teeth were performed preparation for each group(1.0mm rounded shoulder, 0.5mm chamfer). After 30 stone dies were made for each group, the IPS Empress ceramic crowns were fabricated and cemented with resin cement(Bistite resin cement, Tokuyama Soda Co. LTD., Japan) on the natural teeth. The cemented crowns were mounted on the positioning jig and the universal testing machine(Zwick Z020, Zwick Co., Germany)was used to measure the fracture strength, with stress loading on the occlusal surface between buccal and lingual cusp. And also, three-dimensional finite element model was used to measure the stress distribution with two types of the finish lines(1.0mm rounded shoulder, 0.5mm chamfer) and two loading conditions(both buccal and lingual cusp inclination, lingual cusp inclination only). The result of the this study were as follows. In the fracture resistance experiment according to the finish line, the mean fracture strength of rounded shoulder(842N) showed higher value than that of the chamfer(590N) (p<0.05). In the three dimensional finite element analysis of all ceramic crown, metal die and natural teeth model did not show any differences in stress distribution between finish lines. Generally, when force was loaded on the occlusal inclination of buccal and lingual cusp, the stress was concentrated on the loading point and the central groove of occlusal surface. When force was loaded only on the occlusal inclination of lingual cusp, the stress was concentrated on the lingual finish line and loading point.

산업용 드론을 이용한 잣수확용 해머링 시스템의 구조해석 (Structural Analysis of Hammering System for Pine Cone Harvest using Industrial Drone)

  • 김기홍;배대원;최원식
    • 한국산업융합학회 논문집
    • /
    • 제26권2_2호
    • /
    • pp.285-291
    • /
    • 2023
  • In this paper, in order to secure the safety and productivity of pine cone harvest, modeling and structural analysis of the hammering system for pine cone harvest drone that can easily access pine cone of Pinus koraiensis and collide with them to harvest them was performed. It calculate the equivalent stress for the structure of the hammering system and the yield strength of the applied material by applying the shear force of the stalk at which the pine cone is separated from the branch, and it is to verify the safety of the structure and propose an optimal design through appropriate factor of safety and design change. The shear force of the stalk at which the pine cone was separated from the branch was 468 N, and was applied to both ends of the hammering system. The yield strength of SS400 steel used in the hammering system is 245 ㎫, and the design change and structural analysis were performed so that the Von Mises stress could be less than 122.5 ㎫ by applying the factor of safety of 2.0 or more. As a result of the structural analysis of the frist modeling, the Von Mises stress was 220.3 ㎫, the factor of safety was 1.12, and the stress was concentrated in the screw fastening holes. As a result of the design change of the screw fastening holes, the Von Mises stress was 169.4 ㎫, the factor of safety was 1.45, and the stress was concentrated on the side part. As a result of the design change by changing screw fastening holes and adding ribs, the Von Mises stress was 121.6 ㎫, and the factor of safety was 2.02. The safety of the hammering system was secured with an optimal design with little change in mass. There was no deformation or damage as a result of experimenting on pine cone harvest by manufacturing the hammering system with an optimal design.