• Title/Summary/Keyword: Concealment Technique

Search Result 66, Processing Time 0.025 seconds

A Temporal Error Concealment Technique Using Motion Adaptive Boundary Matching Algorithm

  • Kim Won Ki;Jeong Je Chang
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.819-822
    • /
    • 2004
  • To transmit MPEG-2 video on an erroneous channel, a number of error control techniques He needed. Especially, error concealment techniques which can be implemented on receivers independent of transmitters are essential to obtain good video quality. In this paper, a motion adaptive boundary matching algorithm (MA-BMA) is presented for temporal error concealment. Before carrying out BMA, we perform error concealmmt by a motion vector prediction using neighboring motion vectors. If the candidate of error concealment is rot satisfied, search range and reliable boundary pixels are selected by the motion activity or motion vectors ane a damaged macroblock is concealed by applying the MA-BMA. This error concealment technique reduces the complexity and maintains PSNR gain of 0.3 0.7dB compared to the conventional BMA.

  • PDF

Error Concealment based on Extended Block Matching using Gradient Difference (그래디언트 차를 이용한 확장된 블록매칭 기반의 에러은폐기법)

  • 김동욱;김진태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.201-208
    • /
    • 2003
  • The error concealment is very useful technique for real-time communication, such as video conference. In this paper. we propose the error concealment technique to minimize discontinuity of block boundary in consideration of the fact that human visual system is sensitive to discontinuity. The error concealment for each loss block is performed by extended block matching method based on gradient difference. In the simulation result, performance improvement for the proposed technique is on the average 1.32㏈ in comparison with the conventional technique.

Error Concealment Techniques for Visual Quality Improving (화질 향상을 위한 오류 은폐 기법)

  • Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2006
  • The MPEG-2 video compressed bitstream is very sensitive to transmission errors due to the complex coding structure of the MPEG-2 video coding standard. If one packet is lost or received with errors, not only the current frame will be corrupted, but also errors will propagate to succeeding frames within a group of pictures. Therefore, we employ various error resilient coding/decoding techniques to protect and reduce the transmission error effects. Error concealment technique is one of them. Error concealment technique exploits spatial and temporal redundancies of the correctly received video data to conceal the corrupted video data. Motion vector recovery and compensation with the estimated motion vector is good approach to conceal the corrupted data. In this paper, we propose various error concealment algorithms based on motion vector recovery, and compare their performance to those of conventional error concealment methods.

  • PDF

Object Detection from High Resolution Satellite Image by Using Genetic Algorithms

  • Kim Kwang-Eun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.120-122
    • /
    • 2005
  • With the commercial availability of very high resolution satellite imagery, the concealment of national confidential targets such as military facilities became one of the most bothering task to the image distributors. This task has been carried out by handwork masking of the target objects. Therefore, the quality of the concealment was fully depends on the ability and skill of a worker. In this study, a spectral clustering based technique for the seamless concealment of confidential targets in high resolution imagery was developed. The applicability test shows that the proposed technique can be used as a practical procedure for those who need to hide some information in image before public distribution

  • PDF

Spatial Error Concealment Technique for Losslessly Compressed Images Using Data Hiding in Error-Prone Channels

  • Kim, Kyung-Su;Lee, Hae-Yeoun;Lee, Heung-Kyu
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.168-173
    • /
    • 2010
  • Error concealment techniques are significant due to the growing interest in imagery transmission over error-prone channels. This paper presents a spatial error concealment technique for losslessly compressed images using least significant bit (LSB)-based data hiding to reconstruct a close approximation after the loss of image blocks during image transmission. Before transmission, block description information (BDI) is generated by applying quantization following discrete wavelet transform. This is then embedded into the LSB plane of the original image itself at the encoder. At the decoder, this BDI is used to conceal blocks that may have been dropped during the transmission. Although the original image is modified slightly by the message embedding process, no perceptible artifacts are introduced and the visual quality is sufficient for analysis and diagnosis. In comparisons with previous methods at various loss rates, the proposed technique is shown to be promising due to its good performance in the case of a loss of isolated and continuous blocks.

An Efficient Spatial Error Concealment Technique Using Adaptive Edge-Oriented Interpolation (적응적 방향성 보간을 이용한 효율적인 공간적 에러 은닉 기법)

  • Park, Sun-Kyu;Kim, Won-Ki;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.487-495
    • /
    • 2007
  • When error occurs during the network transmission of the image, the quality of the restored image is very serious. Therefore to maintain the received image quality, the error concealment technique is necessary. This paper presents an efficient spatial error concealment method using adaptive edge-oriented interpolation. It deals with errors on slice level. The proposed method uses boundary matching method having 2-step processes. We divide error block into external and internal region, adaptively restore each region. Because this method use overall as well as local edge characteristics, it preserves edge continuity and texture feature. The proposed technique reduces the complexity and provide better reconstruction quality for damaged images than the previous methods.

An Error Concealment Technique for MPEG-4 Video Transmission over Wireless Networks (무선 네트워크 환경에서의 MPEG-4 비디오 전송을 위한 에러 은닉 기법)

  • Park, Jeong-Beom;Eo, Jin-Woo
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.170-178
    • /
    • 2005
  • The video data corrupted by the transmission error due to packet loss induce error propagation in decoded video data, and cause poor video quality. To remedy these corrupted video data, there have been introduced two types of error concealment techniques: spatial or temporal error concealment algorithm. Computational overhead by using spatial error concealment algorithm is a serious disadvantage in mobile video data streaming environment. In this paper, we propose hybrid type error concealment technique recovering video quality of mobile device using MPEG-4 video streaming on error-prone wireless network. Our algorithm is implemented in MPEG-4 decoder. The algorithm adopts Intel Wireless MMX technology to provide high performance of portable embedded multimedia mobile device. It is proven that the proposed algorithm shows expected performance for a mobile streaming system(PDA) on IP channels. Our approach showed better processing speed and better video quality comparing with traditional error concealment algorithm.

  • PDF

A Temporal Error Concealment Technique Using The Adaptive Boundary Matching Algorithm (적응적 경계 정합을 이용한 시간적 에러 은닉 기법)

  • 김원기;이두수;정제창
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.683-691
    • /
    • 2004
  • To transmit MPEG-2 video on an errorneous channel, a number of error control techniques are needed. Especially, error concealment techniques which can be implemented on receivers independent of transmitters are essential to obtain good video quality. In this paper, prediction of motion vector and an adaptive boundary matching algorithm are presented for temporal error concealment. Before the complex BMA, we perform error concealment by a motion vector prediction using neighboring motion vectors. If the candidate of error concealment is not satisfied, search range and reliable boundary pixels are selected by the temporal activity or motion vectors and a damaged macroblock is concealed by applying an adaptive BMA. This error concealment technique reduces the complexity and maintains a PSNR gain of 0.3∼0.7㏈ compared to conventional BMA.

Data Hiding Method Utilizing Skipping Based Hybrid Histogram Shifting (도약기반의 하이브리드 히스토그램 시프팅을 이용하는 데이터 은닉 방법)

  • Choi, YongSoo;Lee, DalHo
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.371-376
    • /
    • 2018
  • In the system security technology, the information hiding field is developed as technologies for embedding information, which are generally used as contents media. The proposed technique is a technical steganography technique which uses a technique of concealing certain information through physical / statistical change of signal values of contents. Recently, there have been various studies based on histogram shifting in reversible data concealment. In multi - peak histogram shifting, the capacity of data concealment gradually increased by applying multiple peak histogram method. In this paper, we analyze the effect of concealment in terms of adopting the histogram shift method including skipping. In addition, we propose multi - branch data concealment as a general method to improve concealment capacity. The above proposal has proved to be an example using mathematical expressions, and further improvement measures could be derived.

Error Concealment Using a Digital Watermarking Technique for Interframe Video Coding

  • Munadi, Khairul;Kurosaki, Masayuki;Kiya, Hitoshi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.599-602
    • /
    • 2002
  • A new approach of error concealment using a digital watermarking technique for interframe video coding is presented in this paper. In the proposed method, the most important feature of the reference frame is extracted. Then, this feature is embedded into the prediction error of current frame prior to transmission. Error concealment is achieved by means of recovering the erroneous reference frame using the embedded data before the reconstruction of current frame is performed. Simulation results demonstrated the effectiveness of the proposed method.

  • PDF