• Title/Summary/Keyword: Computing devices

Search Result 1,377, Processing Time 0.023 seconds

Framework Design of Pervasive Computing System for Inter Space Interactions between Private and Public Smart Spaces

  • Lim, Shin-Young;Chung, Lawrence;Helal, Sumi;Yang, Hen-I
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.198-205
    • /
    • 2009
  • In this paper, design of framework architecture of pervasive computing system providing seamless inter space interactions between private and public smart spaces is presented. The seamless inter space interaction issues are related to establishing user's service environment by allocating relevant resources in a new location where there are no prior settings for the user or where there are current users already being served in the new location. In the realm of pervasive computing, we can have different types of smart spaces, offering proactive and intelligent services, which are islands of smart spaces independent from each other. As users move about, they will have to roam from private smart space to public smart space and vice versa. When they enter a new island of smart space, they will have to setup their devices and service manually to get the same or different services they had at the previous location. Users might be living in a non-pervasive computing environment because this manual operation is inappropriate to its generic features of proactive and intelligent services of pervasive computing. The framework architecture will provide seamless inter space interactions initiated by changes in users' location to acquire negotiations of resources for new and current residents regarding service provision with limited available networked devices.

Event based Rule Processing in Ubiquitous Web Services Environments (유비쿼터스 웹서비스 환경에서 이벤트 기반의 룰 처리 기법)

  • Lee Kang-Chan;Lee Won-Suk;Jeon Jong-Hong;Lee Seung-Yun;Park Jong-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1101-1105
    • /
    • 2006
  • Ubiquitous computing network comprises a variety of distributed service devices. Today Web services technology enables the heterogeneous devices to provide their own services and interact with each other via well-defined Internet protocol. Nevertheless, service devices in ubiquitous environments require more event-driven, autonomous interaction beyond rather passive service-oriented architecture of the present time. This paper presents an ECA (Event-Condition-Action) rule description language in an attempt to support capability for autonomous interactions among service-oriented devices in ubiquitous computing network. Specifically, the proposed WS-ECA is an XML-based ECA rule description language for web service-enabled devices. The rules are embedded in distributed devices which invoke appropriate services in the network if the rules are triggered by some internal or external events. The presented ECA-based device coordination approach is expected to facilitate seamless inter-operation among the web service-enabled devices in the emerging ubiquitous computing environment.

Service Mobility Support Scheme in SDN-based Fog Computing Environment (SDN 기반 Fog Computing 환경에서 서비스 이동성 제공 방안)

  • Kyung, Yeun-Woong;Kim, Tae-Kook
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.39-44
    • /
    • 2020
  • In this paper, we propose a SDN-based fog computing service mobility support scheme. Fog computing architecture has been attracted because it enables task offloading services to IoT(Internet of Things) devices which has limited computing and power resources. However, since static as well as mobile IoT devices are candidate service targets for the fog computing service, the efficient task offloading scheme considering the mobility should be required. Especially for the IoT services which need low-latency response, the new connection and task offloading delay with the new fog computing node after handover can occur QoS(Quality of Service) degradation. Therefore, this paper proposes an efficient service mobility support scheme which considers both task migration and flow rule pre-installations. Task migration allows for the service connectivity when the fog computing node needs to be changed. In addition, the flow rule pre-installations into the forwarding nodes along the path after handover enables to reduce the connection delay and service interruption time.

A Study on Integrity Protection of Edge Computing Application Based on Container Technology (컨테이너 기술을 활용한 엣지 컴퓨팅 환경 어플리케이션 무결성 보호에 대한 연구)

  • Lee, Changhoon;Shin, Youngjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1205-1214
    • /
    • 2021
  • Edge Computing is used as a solution to the cost problem and transmission delay problem caused by network bandwidth consumption that occurs when IoT/CPS devices are integrated into the cloud by performing artificial intelligence (AI) in an environment close to the data source. Since edge computing runs on devices that provide high-performance computation and network connectivity located in the real world, it is necessary to consider application integrity so that it is not exploited by cyber terrorism that can cause human and material damage. In this paper, we propose a technique to protect the integrity of edge computing applications implemented in a script language that is vulnerable to tampering, such as Python, which is used for implementing artificial intelligence, as container images and then digitally signed. The proposed method is based on the integrity protection technology (Docker Contents Trust) provided by the open source container technology. The Docker Client was modified and used to utilize the whitelist for container signature information so that only containers allowed on edge computing devices can be operated.

Effective resource selection and mobility management scheme in mobile grid computing (모바일 그리드 컴퓨팅에서 효율적인 자원 확보와 이동성 관리 기법)

  • Lee, Dae-Won
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.1
    • /
    • pp.53-64
    • /
    • 2010
  • In this paper, we tried to enable a mobile device as a resource to access to mobile grid networks. By advanced Internet techniques, the use of mobile devices has been rapidly increased. Some researches in mobile grid computing tried to combine grid computing with mobile devices. However, according to intrinsic properties of mobile environments, mobile devices have many considerations, such as mobility management, disconnected operation, device heterogeneity, service discovery, resource sharing, security, and so on. To solve these problems, there are two trends for mobile grid computing: a proxy-based mobile grid architecture and an agent-based mobile grid architecture. We focus on a proxy-based mobile grid architecture with IP-paging, which can easily manage idle mobile devices and grid resource status information. Also, we use SIP(Session Initiation Protocol)to support mobility management, mobile grid services. We manage variation of mobile device state and power by paging cache. Finally, using the candidate set and the reservation set of resources, we perform task migration. The performance evaluation by simulation, shows improvement of efficiency and stability during execution.

  • PDF

Educational Method of Algorithm based on Creative Computing Outputs (창의적 컴퓨팅 산출물 기반 알고리즘 교육 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.10 no.1
    • /
    • pp.49-56
    • /
    • 2018
  • Various types of SW education are being operated by universities for non-major undergraduates. And most of them focus on educating computational thinking. Following this computing education, there is a need for an educational method that implements and evaluates creative computing outcomes for each student. In this paper, we propose a method to realize SW education based on creative computing artifacts. To do this, we propose an educational method for students to implement digital logic circuit devices creatively and design SW algorithms that implement the functions of their devices. The proposed training method teaches a simple LED logic circuit using an Arduino board as an example. Students creatively design and implement two pairs of two input logic circuit devices, and design algorithms that represent patterns of implemented devices in various forms. And they design the functional extension and extended algorithm using the input device. By applying the proposed method, non-major students can gain the concept and necessity of algorithm design through creative computing artifacts.

Design of A new Algorithm by Using Standard Deviation Techniques in Multi Edge Computing with IoT Application

  • HASNAIN A. ALMASHHADANI;XIAOHENG DENG;OSAMAH R. AL-HWAIDI;SARMAD T. ABDUL-SAMAD;MOHAMMED M. IBRAHM;SUHAIB N. ABDUL LATIF
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1147-1161
    • /
    • 2023
  • The Internet of Things (IoT) requires a new processing model that will allow scalability in cloud computing while reducing time delay caused by data transmission within a network. Such a model can be achieved by using resources that are closer to the user, i.e., by relying on edge computing (EC). The amount of IoT data also grows with an increase in the number of IoT devices. However, building such a flexible model within a heterogeneous environment is difficult in terms of resources. Moreover, the increasing demand for IoT services necessitates shortening time delay and response time by achieving effective load balancing. IoT devices are expected to generate huge amounts of data within a short amount of time. They will be dynamically deployed, and IoT services will be provided to EC devices or cloud servers to minimize resource costs while meeting the latency and quality of service (QoS) constraints of IoT applications when IoT devices are at the endpoint. EC is an emerging solution to the data processing problem in IoT. In this study, we improve the load balancing process and distribute resources fairly to tasks, which, in turn, will improve QoS in cloud and reduce processing time, and consequently, response time.

A Four-Layer Robust Storage in Cloud using Privacy Preserving Technique with Reliable Computational Intelligence in Fog-Edge

  • Nirmala, E.;Muthurajkumar, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3870-3884
    • /
    • 2020
  • The proposed framework of Four Layer Robust Storage in Cloud (FLRSC) architecture involves host server, local host and edge devices in addition to Virtual Machine Monitoring (VMM). The goal is to protect the privacy of stored data at edge devices. The computational intelligence (CI) part of our algorithm distributes blocks of data to three different layers by partially encoded and forwarded for decoding to the next layer using hash and greed Solomon algorithms. VMM monitoring uses snapshot algorithm to detect intrusion. The proposed system is compared with Tiang Wang method to validate efficiency of data transfer with security. Hence, security is proven against the indexed efficiency. It is an important study to integrate communication between local host software and nearer edge devices through different channels by verifying snapshot using lamport mechanism to ensure integrity and security at software level thereby reducing the latency. It also provides thorough knowledge and understanding about data communication at software level with VMM. The performance evaluation and feasibility study of security in FLRSC against three-layered approach is proven over 232 blocks of data with 98% accuracy. Practical implications and contributions to the growing knowledge base are highlighted along with directions for further research.

M2M Architecture: Can It Realize Ubiquitous Computing in Daily life?

  • Babamir, Seyed Morteza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.566-579
    • /
    • 2012
  • Ubiquitous computing called pervasive one is based on the thought of pervading ability of computation in daily life applications. In other words, it aims to include computation in devices such as electronic equipment and automobiles. This has led to disengagement of computers from desktop form. Accordingly, the notice in ubiquitous computing being taken of a world steeped in remote and wireless computer-based-services. Handheld and wearable programmed devices such as sense and control appliances are such devices. This advancement is rapidly moving domestic tasks and life from device-and-human communication to the device-and-device model. This model called Machine to Machine (M2M) has led to acceleration of developments in sciences such as nano-science, bio-science, and information science. As a result, M2M led to appearance of applications in various fields such as, environment monitoring, agricultural, health care, logistics, and business. Since it is envisaged that M2M communications will play a big role in the future in all wireless applications and will be emerged as a progressive linkage for next-generation communications, this paper aims to consider how much M2M architectures can realize ubiquitous computing in daily life applications. This is carried out after acquainting and initiating readers with M2M architectures and arguments for M2M. Some of the applications was not achievable before but are becoming viable owing to emergence of M2M communications.

System Design Considerations for a ZigBee RF Receiver with regard to Coexistence with Wireless Devices in the2.4GHz ISM-band

  • Seo, Hae-Moon;Park, Yong-Kuk;Park, Woo-Chool;Kim, Dong-Su;Lee, Myung-Soo;Kim, Hyeong-Seok;Choi, Pyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.1
    • /
    • pp.37-49
    • /
    • 2008
  • At the present time the task of designing a highly integrated ZigBee radio frequency (RF) receiver with an excellent coexistence performance is still very demanding and challenging. This paper presents a number of system issues and design considerations for a ZigBee RF receiver, namely IEEE 802.15.4, for coexistence with wireless devices in the 2.4-GHz ISM-band. With regard to IEEE 802.15.4, the paper analyzes receiver performance requirements for; system noise figure (NF), system third-order intercept point (system-IIP3), local oscillator phase noise and selectivity. Based on some assumptions, the paper illustrates the relationship between minimum detectable signal (MDS) and various situations that involve the effects of electromagnetic interference generated by other wireless devices. We infer the necessity of much more stringent specification requirements than the published standard for various wireless communication field environments