• 제목/요약/키워드: Computer-based learning

검색결과 4,517건 처리시간 0.035초

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.133-153
    • /
    • 2023
  • 본 논문에서 우리는 뇌 신호 측정 기술 중 하나인 뇌전도를 활용한 새로운 접근방식을 제안한다. 전통적으로 연구자들은 감정 상태의 분류성능을 향상시키기 위해 뇌전도 신호와 생체신호를 결합해왔다. 우리의 목표는 뇌전도와 결합된 생체신호의 상호작용 효과를 탐구하고, 뇌전도+생체신호의 조합이 뇌전도 단독사용 또는 임의로 생성된 의사 무작위 신호와 결합한 경우에 비해 감정 상태의 분류 정확도를 향상시킬 수 있는지를 확인한다. 네 가지 특징추출 방법을 사용하여 두 개의 공개 데이터셋에서 얻은 데이터 기반의 뇌전도, 뇌전도+생체신호, 뇌전도+생체신호+무작위신호, 및 뇌전도+무작위신호의 네 가지 조합을 조사했다. 감정 상태 (작업 대 휴식 상태)는 서포트 벡터 머신과 장단기 기억망 분류기를 사용하여 분류했다. 우리의 결과는 가장 높은 정확도를 가진 서포트 벡터 머신과 고속 퓨리에 변환을 사용할 때 뇌전도+생체신호의 평균 오류율이 뇌전도+무작위신호와 뇌전도 단독 신호만을 사용한 경우에 비해 각각 4.7% 및 6.5% 높았음을 보여주었다. 우리는 또한 다양한 무작위 신호를 결합하여 뇌전도+생체신호의 오류율을 철저하게 분석했다. 뇌전도+생체신호+무작위신호의 오류율 패턴은 초기에는 깊은 이중 감소 현상으로 인해 감소하다가 차원의 저주로 인해 증가하는 V자 모양을 나타냈다. 결과적으로, 우리의 연구 결과는 뇌파와 생체신호의 결합이 항상 유망한 분류성능을 보장할 수 없음을 시사한다.

적응형 블러 기반 비디오의 수평적 확장 여부 판별 네트워크 (Video classifier with adaptive blur network to determine horizontally extrapolatable video content)

  • 김민선;서창욱;윤현호;노준용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.99-107
    • /
    • 2024
  • 기존에 존재하는 비디오 영역을 가로 혹은 세로로 확장하는 비디오 확장 기술에 대한 수요가 높아지고 있지만, 최신 기술로도 모든 비디오를 성공적으로 확장할 수는 없다. 따라서 비디오 확장을 시도하기 전에 해당 비디오가 잘 확장될 수 있을지 판단하는 것이 중요하다. 이를 통해 불필요한 컴퓨팅 자원 낭비를 줄일 수 있기 때문이다. 이 논문은 비디오가 수평 확장에 적합한지 판별하는 비디오 분류기를 제안한다. 이 분류기는 광학 흐름과 적응형 가우시안 블러 네트워크를 활용하여 흐름 기반 비디오 확장 방식에 적용할 수 있다. 학습을 위한 라벨링은 유저 테스트 및 정량적 평가를 거쳐 엄격하게 이루어졌다. 이렇게 라벨링된 데이터셋으로 학습한 결과, 주어진 비디오의 확장 가능성을 분류하는 네트워크를 개발할 수 있었다. 제안된 분류기는 광학 흐름과 적응형 가우시안 블러 네트워크를 통해 비디오의 특성을 효과적으로 포착함으로써, 단순히 원본 비디오나 고정된 블러만을 사용하는 경우보다 훨씬 정확한 분류 성능을 보였다. 이 분류기는 향후 다양한 분야에서 활용될 수 있으며, 특히 몰입감 있는 시청 경험을 위해 장면을 자동으로 확장하는 기술과 함께 사용될 수 있을 것으로 기대된다.

위치 정보 인코딩 기반 ISP 신경망 성능 개선 (Enhancing A Neural-Network-based ISP Model through Positional Encoding)

  • 김대연;김우혁;조성현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.81-86
    • /
    • 2024
  • 영상 신호 프로세서(Image Signal Processor, ISP)는 카메라 센서로부터 획득된 RAW 영상을 사람의 눈에 보기 좋은 sRGB 영상으로 변환한다. RAW 영상은 sRGB 영상에 비해 영상 처리에 도움이 되는 정보를 가지고 있지만 상대적으로 큰 용량으로 인해 주로 sRGB 영상만 저장되고 사용된다. 또한, 실제 카메라의 ISP 과정이 공개되어 있지 않아 그 역과정을 모사하는 것은 매우 어렵다. 이에 sRGB와 RAW 영상의 상호 변환을 위한 카메라 ISP 모델링 연구가 활발히 진행되고 있으며, 최근 기존의 단순한 ISP 신경망 구조를 고도화하고 실제 카메라 ISP의 동작과 유사하게 카메라 파라미터(노출 시간, 감도, 조리개 크기, 초점 거리)를 직접 반영하는 ParamISP[1] 모델이 제안되었다. 하지만 ParamISP[1]를 포함한 기존의 연구는 카메라 ISP를 모델링함에 있어 렌즈로 인해 발생하는 렌즈 쉐이딩(Lens Shading), 광학 수차(Optical Aberration), 렌즈 왜곡(Lens Distortion) 등을 고려하지 않아 복원 성능에 한계가 있다. 본 연구는 ISP 신경망이 렌즈로 인해 발생하는 열화를 보다 잘 다룰 수 있도록 위치 정보 인코딩(Positional Encoding)을 도입한다. 제안하는 위치 정보 인코딩 기법은 영상을 분할하여 패치(Patch) 단위로 학습하는 카메라 ISP 신경망에 적합하며 기존 모델에 비해 영상의 공간적 맥락을 반영할 수 있어 더욱 정교한 영상 복원을 가능하게 한다.

특징집합 IG-MLP 평가 기반의 최적화된 특징선택 방법을 이용한 질환 예측 머신러닝 모델 (Optimized Feature Selection using Feature Subset IG-MLP Evaluation based Machine Learning Model for Disease Prediction)

  • 김경륜;김재권;이종식
    • 한국시뮬레이션학회논문지
    • /
    • 제29권1호
    • /
    • pp.11-21
    • /
    • 2020
  • 암을 제외한 한국인의 가장 높은 사망원인은 심뇌혈관질환으로 사망원인의 24%를 차지한다. 현재 국내 환자의 심혈관질환의 위험도 산출은 프레밍험 위험지수를 기반으로 하지만, 국외의 가이드라인에 의존하고 있어 정확도가 떨어지는 편이며, 뇌혈관질환의 예측에 대한 위험도는 산출할 수 없다. 심뇌혈관질환은 예방을 위한 조기증상들의 특징 분석이 어려워 질환예측이 힘들며, 한국인에 적합한 예측 방법이 필요하다. 본 연구의 목적은 심뇌혈관질환 데이터를 이용하여, 특징집합 IG-MLP 평가 기반의 특징선택 방법론을 시뮬레이션 하여 검증하는 것이다. 제안하는 방법은 제4~7기 국민건강영양조사 원시자료를 이용한다. 심뇌혈관질환의 예측에 중요한 특징들을 선별하기 위해, 속성들의 심뇌혈관질환에 대한 정보이득-다층신경망을 이용한 분석을 실시하며, 최종적으로 선별된 특징을 이용한 심뇌혈관질환 예측 모델을 제공한다. 제안하는 방법으로 한국인의 심뇌혈관질환에 관련된 중요한 특징들을 찾을 수 있으며, 최적화된 특징들로 구성된 예측 모델은 한국인에 대해 더욱 정확한 심뇌혈관 예측을 할 수 있다.

소프트웨어 에이전트 및 지식탐사기술 기반 지능형 인터넷 쇼핑몰 지원도구의 개발 (Development of Intelligent Internet Shopping Mall Supporting Tool Based on Software Agents and Knowledge Discovery Technology)

  • 김재경;김우주;조윤호;김제란
    • 지능정보연구
    • /
    • 제7권2호
    • /
    • pp.153-177
    • /
    • 2001
  • 데이터베이스 마케팅을 필두로 최근 마케팅 분야에서는 보다 고객에 적합한 제품이나 서비스를 제공하고 또한 이로 인해 그 마케팅 비용을 최소화하고 또한 그 매출효과를 극대화하고자 하는 움직임이 가속화되고 있으며, 극단적으로는 일대일 마케팅이라고까지 표현하고 있다. 더욱이 전자쇼핑몰에 있어서는 실제 판매원이 존재하지 않는 이상 보다 더 고객의 관심을 유도하고 궁극적으로 매출을 발생시키기가 더욱 어려운 실정이며 따라서 고객을 파악하기 또한 그 고객에 적합한 제품이나 서비스에 대한 정보를 즉각적 또는 사전적으로 추측 제시하여야 하는 역량이 매우 중요하다 하겠다. 그러나 이와 같은 즉시성의 추정이나 판단의 유효성을 제고하기 위해서는 전자쇼핑몰 입장에서 일단의 단편적 정보에 의존하는 방식보다는 이용가능한 모든 정보에 대한 통합적 고찰과 또한 고객에 대한 제안 여부와 추천 의사 결정을 개별적이고 순차적인 절차로 보는 관점보다는 하나의 통일된 관점에서 최대의 효과를 발생시킬 수 있도록 하는 상품 추천 방법론이 필요하다 하겠다. 본 연구는 이를 위해 전자쇼핑몰에서의 오프라인/온라인의 통합 정보를 바탕으로 추천 대상 고객 선정 및 추천 효과의 최적화를 목적으로 추천 상품 및 서비스 결정의 의사결정들에 대한 단일 의사결정 방법론 즉 상품 추천 방법론을 제안하며 이를 에이전트 기법을 바탕으로 설계하였다. 또한 이상의 방법론과 설계기법을 국내 유수의 전자쇼핑몰에 적용하여 그 실험적 성과를 제시하고 있다.

  • PDF

메타인지 발달을 위한 인지적 도제 기반의 로봇 프로그래밍 교수.학습 모형 개발 (Development of a Robot Programming Instructional Model based on Cognitive Apprenticeship for the Enhancement of Metacognition)

  • 연혜진;조미헌
    • 정보교육학회논문지
    • /
    • 제18권2호
    • /
    • pp.225-234
    • /
    • 2014
  • 로봇 프로그래밍은 주어진 과제를 해결하기 위한 알고리즘을 계획하고, 그 알고리즘을 구현하며, 그 결과를 로봇이라는 매체를 통해서 쉽게 확인하고 오류를 수정할 수 있도록 한다. 따라서 로봇 프로그래밍은 반성적 사고에 기반을 둔 문제해결의 과정이며, 학생들의 메타인지와 밀접히 관련된다. 이에 본 연구는 학생의 메타인지 발달을 위한 로봇 프로그래밍 교수 학습 모형을 개발하는 것을 목적으로 수행되었다. 로봇 프로그래밍 교수 학습의 단계를 '학습과제 탐구', '교사의 모델링', '과제 수행 계획 및 시각화', '과제 수행', '자기 평가 및 강화' 등과 같은 5가지로 나누고, 각 단계의 활동들을 메타인지 주요 전략들(계획, 모니터링, 조절, 평가)와 연계하였다. 또한 학생들의 프로그래밍 활동과 메타인지 전략의 활용을 지원하기 위하여 인지적 도제를 기반으로 '모델링', '코칭', '스캐폴딩'과 같은 전략들을 교수 학습 모델과 연계하여 명시하였다. 이와 더불어서, 메타인지 활동을 지원하기 위해서 자기질문법을 도입하여, 학생들이 로봇 프로그래밍 활동의 각 단계별로 사용할 수 있는 자기질문 등을 제시하였다.

Positive Random Forest 기반의 강건한 객체 추적 (Positive Random Forest based Robust Object Tracking)

  • 조윤섭;정수웅;이상근
    • 전자공학회논문지
    • /
    • 제52권6호
    • /
    • pp.107-116
    • /
    • 2015
  • 고성능 컴퓨터와 디지털 카메라의 보급으로 컴퓨터를 이용한 객체 탐지 및 추적은 컴퓨터 비전의 다양한 응용분야에서 중요한 문제로 대두 되고 있다. 또한, 지능형 자동화 감시 장치, 영상 분석 장치, 자동화된 로봇 분야 등에서 그 필요성이 점점 부각 되고 있다. 객체 추적은 카메라를 이용하여 움직이는 객체의 위치를 찾는 처리 과정을 의미 하며, 강건한 객체 추적을 위해서는 객체의 스케일, 형태 변화, 회전에 강건하고 정확한 객체의 위치를 파악할 수 있어야한다. 본 논문에서는 랜덤 포레스트를 이용한 강건한 객체 추적에 대한 알고리즘을 제안하였다. 정확한 객체의 위치를 찾기 위해 지역 공분산과 ZNCC (Zeros Mean Normalized Cross Correlation)를 사용하여 객체를 검출하고 검출된 객체를 5개의 부분으로 나누어 랜덤 포레스트로 객체가 잘 검출 되었는지 검증 한다. 검증된 객체 중 모델을 선택하여 객체 검출이 잘못 되었다고 판단된 경우 입력 모델을 변경하여 정확한 객체를 찾도록 하였다. 제안된 알고리즘과 기존의 알고리즘들을 비교 하였을 때 비교적 정확한 객체의 위치를 잘 찾아 가는 것을 확인하였다.

3D프린터를 활용한 융합교육이 초등학생의 컴퓨팅 사고력에 미치는 영향 (The Effect of the Integrative Education Using a 3D Printer on the Computational Thinking Ability of Elementary School Students)

  • 임동훈;김태영
    • 정보교육학회논문지
    • /
    • 제23권5호
    • /
    • pp.469-480
    • /
    • 2019
  • 새로운 2015 개정 교육과정이 추구하고 있는 목적 중의 하나는 4차 산업혁명 시대에 살아갈 학생들이 기본 학습 능력의 바탕 위에 다양한 발상과 도전으로 새로운 것을 창출하는 창의성을 기르는 것이다. 이에 따라 주어진 문제들을 합리적으로 해결하기 위하여 다양한 영역의 지식과 정보를 처리하고 활용할 수 있는 융합적 문제해결 역량이 중요시되고 있다. 이에 본 연구에서는 틴커캐드(Tinkercad) 모델링을 기반으로 하여 3D프린터를 활용한 융합교육을 설계하고 이를 수업에 적용하여 초등학생의 컴퓨팅 사고력 증진에 미치는 영향을 알아보았다. 연구 내용을 검증하기 위해 초등학교 6학년 25명 2개 반을 실험집단과 통제집단으로 나누고 실험집단에는 약 3개월간 3D프린터를 활용한 융합교육 프로그램 12차시를 적용하고, 통제집단에는 같은 시기 동안 동일 주제의 강의식 교과 수업을 진행하였다. 그 후에 컴퓨팅 사고력 검사 도구를 투입하여 사전-사후 검사로 t-검정을 실시하고 그 효과성을 알아보았다. 프로그램 적용 후 사후 검사에서 실험집단은 컴퓨팅 사고력이 통계적으로 유의하게 향상 되었으나, 통제집단은 통계적으로 유의한 차이가 없었다. 이 결과를 통해 틴커캐드 모델링 기반의 3D프린터를 활용한 융합교육이 초등학생의 컴퓨팅 사고력 증진에 긍정적인 영향을 미치는 것으로 보인다.

미국의 초중등교육법 분석: 문헌정보 서비스 내용을 중심으로 (An Analysis on the Elementary and Secondary Education Act of the US -Focusing on the Contents of Library and Information Services)

  • 장령령;박주현
    • 한국도서관정보학회지
    • /
    • 제50권1호
    • /
    • pp.357-380
    • /
    • 2019
  • 본 연구의 목적은 2015년 '모든 학생 성공법'에 의해 재인증된 미국의 초중등교육법을 문헌정보 서비스의 관점에서 법률의 내용을 분석하고 이를 통해 문헌정보 서비스 개선 등에 관한 시사점을 도출하는 데 있다. 분석결과, 이 법에는 최초로 '효과적인 학교도서관 프로그램'과 '학교 사서'가 명시되어 있으며 '학교도서관 프로그램'과 '학교 사서'를 리터러시와 디지털 리터러시, 도서, 자원, 최신 자료, 기술, 도서관 서비스 및 교육 서비스와 연계시키고 있어 미국의 초중등학교에서 문헌정보 서비스가 보다 적극적으로 수행될 수 있는 재정적 제도적 기반을 제공하고 있다. 또한, 이 법에는 학교 사서가 개인화된 학습 경험, 증거 기반 평가, 전문성 개발에 참여해야 한다고 명시하고 있으며 학생들의 학업성취도와 리터러시 및 디지털 리터러시 향상을 위하여 학생, 교직원, 학부모에게 문헌정보 서비스를 제공해야 함을 규정하고 있다. 이러한 분석 내용을 바탕으로 본 연구는 학교도서관 접근성 강화, 사서교사 등의 문헌정보 서비스 업무 구체화, 학교 구성원과의 협력 강화, 증거 기반에 따른 교육 활동, 교육적 효과의 공유, 문헌정보 교육과정 개발을 논의하였다.

단일 레이블 분류를 이용한 종단 간 화자 분할 시스템 성능 향상에 관한 연구 (A study on end-to-end speaker diarization system using single-label classification)

  • 정재희;김우일
    • 한국음향학회지
    • /
    • 제42권6호
    • /
    • pp.536-543
    • /
    • 2023
  • 다수의 화자가 존재하는 음성에서 "누가 언제 발화했는가?"에 대해 레이블링하는 화자 분할은 발화 중첩 구간에 대한 레이블링과 화자 분할 모델의 최적화를 위해 심층 신경망 기반의 종단 간 방법에 대해 연구되었다. 대부분 심층 신경망 기반의 종단 간 화자 분할 시스템은 음성의 각 프레임에서 발화한 모든 화자의 레이블들을 추정하는 다중 레이블 분류 문제로 분할을 수행한다. 다중 레이블 기반의 화자 분할 시스템은 임계값을 어떤 값으로 설정하는지에 따라 모델의 성능이 많이 달라진다. 본 논문에서는 임계값 없이 화자 분할을 수행할 수 있도록 단일 레이블 분류를 이용한 화자 분할 시스템에 대해 연구하였다. 제안하는 화자 분할 시스템은 기존의 화자 레이블을 단일 레이블 형태로 변환하여 모델의 출력으로부터 레이블을 바로 추정한다. 훈련에서는 화자 레이블 순열을 고려하기 위해 Permutation Invariant Training(PIT) 손실함수와 교차 엔트로피 손실함수를 조합하여 사용하였다. 또한 심층 구조를 갖는 모델의 효과적인 학습을 위해 화자 분할 모델에 잔차 연결 구조를 추가하였다. 실험은 Librispeech 데이터베이스를 이용해 화자 2명에 대한 시뮬레이션 잡음 데이터를 생성하여 사용하였다. Diarization Error Rate(DER) 성능 평가 지수를 이용해 제안한 방법과 베이스라인 모델을 비교 평가했을 때, 제안한 방법이 임계값 없이 분할이 가능하며, 약 20.7 %만큼 향상된 성능을 보였다.