• 제목/요약/키워드: Computer-based learning

검색결과 4,517건 처리시간 0.038초

머신러닝에 기반을 둔 사진 속 개인정보 검출 및 블러링 클라우드 서비스 (Personal Information Detection and Blurring Cloud Services Based on Machine Learning)

  • 김민정;이수영;이지영;함나연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.152-155
    • /
    • 2019
  • 클라우드가 대중화되어 많은 모바일 유저들이 자동 백업 기능을 사용하면서 민감한 개인정보가 포함된 사진들이 무분별하게 클라우드에 업로드 되고 있다. 개인정보를 포함한 클라우드가 악의적으로 해킹 될 시, 사진에 포함된 지문, 자동차 번호판, 카드 번호 등이 유출됨에 따라 대량의 개인정보가 유출될 가능성이 크다. 이에 따라 적절한 기준에 맞게 사진 속 개인 정보 유출을 막을 수 있는 기술의 필요성이 대두되고 있다. 현재의 클라우드 시스템의 문제를 해결하고자 본 연구는 모바일 기기에서 클라우드 서버로 사진을 백업하는 과정에서 영역 검출과 블러링의 과정을 제안하고 있다. 클라우드 업로드 과정에서 사진 속의 개인 정보를 검출한 뒤 이를 블러링하여 클라우드에 저장함으로써 악의적인 접근이 행해지더라도 개인정보의 유출을 방지할 수 있다. 머신러닝과 computer vision library등을 이용하여 이미지 내에 민감한 정보를 포함하고 있는 영역을 학습된 모델을 통해 검출한 뒤, OpenCV를 이용하여 블러링처리를 진행한다 사진 속에 포함될 수 있는 생체정보인 지문은 손 영역을 검출한 뒤, 해당 영역을 블러링을 하여 업로드하고 카드번호나 자동차 번호판이 포함된 사진은 영역을 블러링한 뒤, 암호화하여 업로드 된다. 후에 필요에 따라 본인인증을 거친 후 일정기간 열람을 허용하지만 사용되지 않을 경우 삭제되도록 한다. 개인정보 유출로 인한 피해가 꾸준히 증가하고 있는 지금, 사진 속의 개인 정보를 보호하는 기술은 안전한 통신과 더불어 클라우드의 사용을 더 편리하게 할 수 있을 것으로 기대된다.

트랙터 자동변속기 되먹임 변속 제어기 설계 (Feedback Shift Controller Design of Automatic Transmission for Tractors)

  • 정규홍;정창도;박세하
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Nowadays automatic transmission equipped vehicles prevail in construction and agricultural equipment due to their convenience in driving and operation. Though domestic vehicle manufacturers install imported electronic controlled transmissions at present, overseas products will be replaced by domestic ones in the near future owing to development efforts over the past 10 years. For passenger cars, there are many kinds of shift control algorithms that enhance the shift quality such as feedback and learning control. However, since shift control technologies for heavy duty vehicles are not highly developed, it is possible to improve the shift quality with an organized control method. A feedback control algorithm for neutral-into-gear shift, which is enabled during the inertia phase for the master clutch slip speed to track the slip speed reference, is proposed based on the power transmission structure of TH100. The performance of the feedback shift control is verified by a vehicle test which is implemented with firmware embedded TCU. As the master clutch engages along the predetermined speed trajectory, it can be concluded that the shift quality can be managed by a shift time control parameter. By extending the proposed feedback algorithm for neutral-into-gear shift to gear change and shuttle shift, it is expected that the quality of the shift can be improved.

건설 현장 CCTV 영상을 이용한 작업자와 중장비 추출 및 다중 객체 추적 (Extraction of Workers and Heavy Equipment and Muliti-Object Tracking using Surveillance System in Construction Sites)

  • 조영운;강경수;손보식;류한국
    • 한국건축시공학회지
    • /
    • 제21권5호
    • /
    • pp.397-408
    • /
    • 2021
  • 건설업은 업무상 재해 발생빈도와 사망자 수가 다른 산업군에 비해 높아 가장 위험한 산업군으로 불린다. 정부는 건설 현장에서 발생하는 산업 재해를 줄이고 예방하기 위해 CCTV 설치 의무화를 발표했다. 건설 현장의 안전 관리자는 CCTV 관제를 통해 현장의 잠재된 위험성을 찾아 제거하고 재해를 예방한다. 하지만 장시간 관제 업무는 피로도가 매우 높아 중요한 상황을 놓치는 경우가 많다. 따라서 본 연구는 딥러닝 기반 컴퓨터 비전 모형 중 개체 분할인 YOLACT와 다중 객체 추적 기법인 SORT을 적용하여 다중 클래스 다중 객체 추적 시스템을 개발하였다. 건설 현장에서 촬영한 영상으로 제안한 방법론의 성능을 MS COCO와 MOT 평가지표로 평가하였다. SORT는 YOLACT의 의존성이 높아서 작은 객체가 적은 데이터셋을 학습한 모형의 성능으로 먼 거리의 물체를 추적하는 성능이 떨어지지만, 크기가 큰 객체에서 뛰어난 성능을 나타냈다. 본 연구로 인해 딥러닝 기반 컴퓨터 비전 기법들의 안전 관제 업무에 보조 역할로 업무상 재해를 예방할 수 있을 것으로 판단된다.

전문경력인사 초빙활용지원사업의 성과 평가 요소 개발 연구 (Development of the Factors for Evaluating Performance of the Professional Career Personnel Invitation Program)

  • 김미혜;박혜진;김용영
    • 디지털융복합연구
    • /
    • 제19권12호
    • /
    • pp.51-62
    • /
    • 2021
  • 본 연구는 전문경력인사 초빙활용지원사업의 성과 관리 및 평가 체계 강화를 위해 전문경력인사의 과업 수행에 대한 체계적·포괄적 평가가 가능한 평가 요소를 개발하였다. 이를 위해 경계이론과 커크패트릭 4수준 평가 모델에 기반을 두고 사업 평가와 관련한 기존 연구를 분석하여 성과 평가 프레임워크를 개발하였다. 이후 2차에 걸친 델파이 조사 방법을 활용하여 전문경력인사의 개인 측면과 활용 기관 측면에서 성과를 측정할 수 있는 평가 요소를 도출하고, 구체적인 측정 문항을 개발하여 타당화 작업을 진행하였다. 이러한 절차를 거쳐 최종적으로 적용성, 연계성, 명확성, 적합성, 확장성 등 5가지 평가 요소를 선정하였으며, 각 요소별 구체적인 평가 목적을 수립하여 실제 전문경력인사 초빙활용지원사업의 성과 관리를 위해 적용 가능하도록 하였다. 본 연구는 1994년부터 한국연구재단에서 운영하고 있는 전문경력인사 초빙활용지원사업의 성과 관리를 위해 정량적 정성평가가 가능한 성과 평가 체계와 요소를 제시하였다는 데 의의가 있다.

Performance Counter Monitor를 이용한 FLUSH+RELOAD 공격 실시간 탐지 기법 (Real-Time Detection on FLUSH+RELOAD Attack Using Performance Counter Monitor)

  • 조종현;김태현;신영주
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권6호
    • /
    • pp.151-158
    • /
    • 2019
  • 캐시 부채널 공격 중 하나인 FLUSH+RELOAD 공격은 높은 해상도와 적은 노이즈로 여러 악성 프로그램에서도 활용되는 등 비밀 정보의 유출에 대한 위험성이 높은 공격이다. 따라서 이 공격을 막기 위해 실시간으로 공격을 탐지하는 기술을 개발할 필요가 있다. 본 논문에서는 프로세서의 PCM (Performance Counter Monitor)를 이용한 실시간 FLUSH+RELOAD 공격 탐지 기법을 제안한다. 탐지 방법의 개발을 위해 우선 공격이 발생하는 동안 PCM의 여러 카운터들의 값들의 변화를 4가지 실험을 통해 관찰하였다. 그 결과, 3가지 중요한 요인에 의해 공격 탐지를 할 수 있다는 것을 발견하였다. 이를 바탕으로 머신 러닝의 logistic regression과 ANN(Artificial Neural Network)를 사용해 결과에 대한 각각 학습을 시킨 뒤 실시간으로 공격에 대한 탐지를 할 수 있는 알고리즘을 개발하였다. 이 탐지 알고리즘은 일정한 시간동안 공격을 진행하여 모든 공격을 감지하는데 성공하였고 상대적으로 적은 오탐률을 보여주었다.

귀납 추리를 이용한 침입 흔적 로그 순위 결정 (Determination of Intrusion Log Ranking using Inductive Inference)

  • 고수정
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2019
  • 대량의 로그 자료로부터 가장 적합한 정보를 추출하기 위한 방법 중 귀납 추리를 이용한 방법이 있다. 본 논문에서는 디지털 포렌식 분석에서 침입 흔적 로그의 순위를 결정하기 위하여 귀납 추리를 이용한 방법 중 분류에 있어서 우수한 SVM(Support Vector Machine)을 이용한다. 이를 위하여, 훈련 로그 집합의 로그 데이터를 침입 흔적 로그와 정상 로그로 분류한다. 분류된 각 집합으로부터 연관 단어를 추출하여 연관 단어 사전을 생성하고, 생성된 사전을 기반으로 각 로그를 벡터로 표현한다. 다음으로, 벡터로 표현된 로그를 SVM을 이용하여 학습하고, 학습된 로그 집합을 기반으로 테스트 로그 집합을 정상 로그와 침입 흔적 로그로 분류한다. 최종적으로, 포렌식 분석가에게 침입 흔적 로그를 추천하기 위하여 침입 흔적 로그의 추천 순위를 결정한다.

디지털 가이드 수술의 이해와 임상적 적용 (Need-to-knows about Digital Implant Surgery)

  • 백장현;권긍록;김형섭;배아란;노관태;홍성진;이현종
    • 대한치과의사협회지
    • /
    • 제56권11호
    • /
    • pp.631-640
    • /
    • 2018
  • Nowadays computer-guided "flapless" surgery for implant placement using templates is gaining popularity among clinicians and patients. The advantages of this surgical protocol are its minimally invasive nature, accuracy of implant placement, predictability, less post-surgical discomfort and reduced time required for definitive rehabilitation. Aim of this study is to describe the digital implant protocol, thanks to which is now possible to do a mini-invasive static guided implant surgery. This is possible thanks to a procedure named surface mapping based on the matching between numerous points on the surface of patient's dental casts and the corresponding anatomical surface points in the CBCT data. With some critical points and needing an adequate learning curve, this protocol allows to select the ideal implant position in depth, inclination and mesio-distal distance between natural teeth and or other implants enabling a very safe and predictable rehabilitation compared with conventional surgery. It represents a good tool for the best compromise between anatomy, function and aesthetic, able to guarantee better results in all clinical situations.

  • PDF

약물 관련 정보를 이용한 약물 부작용 예측 (Prediction of Drug Side Effects Based on Drug-Related Information)

  • 서수경;이태건;윤영미
    • 한국정보기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.21-28
    • /
    • 2019
  • 약물 부작용이란 질병의 예방, 진단 또는 치료에 사용된 약물로부터 발생한 유해하고 의도하지 않은 현상이다. 이러한 부작용은 환자를 죽음에 이르게 할 수 있으며, 약물 개발 실패의 주요 원인 중 하나이다, 따라서, 다양한 방법들이 부작용을 알아내기 위하여 시도되었다. 본 연구에서는 시스템스 바이올로지 접근법을 기반으로 기존 연구에서 주로 사용되었던 화학적 구조, 생물학적 정보 이외에도 다양한 표현형 정보를 사용하는 것에 주목하였다. 먼저, 5가지 적응증 데이터베이스, 화학적 구조, 타겟 유전자 정보를 수집하고 개별로 유사도를 계산하였다. 테이블은 하나의 약물-부작용에 대하여 앞서 생성된 유사도를 이용하여 생성되었고 다양한 기계학습 기법이 적용되었다. 결과는 AUC(Area Under the ROC Curve)값을 통해 확인하였다. 본 연구의 유의성은 비교 실험을 통하여 확인하였다.

필터링 기반의 잡음 제거를 통한 피부 영역의 추출 (Extraction of Skin Regions through Filtering-based Noise Removal)

  • 장석우
    • 한국산학기술학회논문지
    • /
    • 제21권12호
    • /
    • pp.672-678
    • /
    • 2020
  • 최근 들어 초고속의 영상 촬영이 가능한 저가이며 성능이 우수한 카메라가 등장함에 따라서 물체의 미세한 움직임까지 정확하게 묘사한 초고속의 영상들이 보편화되고 있는 실정이다. 본 논문에서는 빠른 속도로 입력되는 초고속의 영상으로부터 예기치 않게 포함된 잡음을 제거한 다음, 잡음이 제거된 영상으로부터 피부 영역과 같이 개인 정보를 대표할 수 있는 관심 영역을 추출하는 방법을 제안한다. 본 논문에서는 먼저 입력받은 초고속의 영상으로부터 비정상적인 전기 신호로 인해 발생한 잡음을 양방향의 필터를 적용하여 제거한다. 그런 다음, 사전 학습을 통해 생성한 색상 분포 모델을 사용하여 영상 내에 포함된 개인 정보를 대표하는 관심 영역인 피부 영역을 정확하게 추출한다. 실험 결과에서는 본 연구에서 소개된 알고리즘이 여러 가지의 초고속 영상으로부터 잡음을 제거한 다음 관심 영역을 강인하게 추출한다는 것을 보여준다. 본 논문에서 제시된 접근 방법은 영상 전처리, 잡음 제거, 목표 영역의 추적 및 감시 등과 같은 컴퓨터 비전 및 패턴인식과 관련된 여러 가지의 응용 분야에서 유용하게 사용될 것으로 예상된다.

반려동물 모니터링을 위한 YOLO 기반의 이동식 시스템 설계 (Design of YOLO-based Removable System for Pet Monitoring)

  • 이민혜;강준영;임순자
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.22-27
    • /
    • 2020
  • 최근 1인 가구의 증가로 반려동물을 키우는 가구가 많아짐에 따라, 주인의 부재 시에도 반려동물의 상태나 행동을 모니터링하는 시스템에 대한 필요성이 요구되고 있다. 가정용 CCTV를 이용한 반려동물의 모니터링에는 지역적 한계가 있어, 다수의 CCTV를 필요로 하거나 반려동물의 행동반경을 제한하는 방법을 사용하게 된다. 본 논문에서는 반려동물 모니터링의 지역적 한계를 해결하고자 딥러닝을 이용하여 고양이를 검출하고 추적하는 이동식 시스템을 제안한다. 객체 검출 신경망 모델의 하나인 YOLO(You Look Only Once)를 이용하여 데이터셋을 학습하고, 이를 기반으로 라즈베리파이에 적용하여 영상에서 검출된 객체를 추적한다. 라즈베리파이와 노트북을 무선 랜으로 연결하고 고양이의 움직임과 상태를 실시간으로 확인이 가능한 이동식 모니터링 시스템을 설계하였다.