• Title/Summary/Keyword: Computer-aided milling

Search Result 45, Processing Time 0.017 seconds

Accuracy evaluation of metal copings fabricated by computer-aided milling and direct metal laser sintering systems

  • Park, Jong-Kyoung;Lee, Wan-Sun;Kim, Hae-Young;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.122-128
    • /
    • 2015
  • PURPOSE. To assess the marginal and internal gaps of the copings fabricated by computer-aided milling and direct metal laser sintering (DMLS) systems in comparison to casting method. MATERIALS AND METHODS. Ten metal copings were fabricated by casting, computer-aided milling, and DMLS. Seven mesiodistal and labiolingual positions were then measured, and each of these were divided into the categories; marginal gap (MG), cervical gap (CG), axial wall at internal gap (AG), and incisal edge at internal gap (IG). Evaluation was performed by a silicone replica technique. A digital microscope was used for measurement of silicone layer. Statistical analyses included one-way and repeated measure ANOVA to test the difference between the fabrication methods and categories of measured points (${\alpha}$=.05), respectively. RESULTS. The mean gap differed significantly with fabrication methods (P<.001). Casting produced the narrowest gap in each of the four measured positions, whereas CG, AG, and IG proved narrower in computer-aided milling than in DMLS. Thus, with the exception of MG, all positions exhibited a significant difference between computer-aided milling and DMLS (P<.05). CONCLUSION. Although the gap was found to vary with fabrication methods, the marginal and internal gaps of the copings fabricated by computer-aided milling and DMLS fell within the range of clinical acceptance (< $120{\mu}m$). However, the statistically significant difference to conventional casting indicates that the gaps in computer-aided milling and DMLS fabricated restorations still need to be further reduced.

Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method

  • Jeong, Yoo-Geum;Lee, Wan-Sun;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2018
  • PURPOSE. To evaluate the accuracy of a model made using the computer-aided design/computer-aided manufacture (CAD/CAM) milling method and 3D printing method and to confirm its applicability as a work model for dental prosthesis production. MATERIALS AND METHODS. First, a natural tooth model (ANA-4, Frasaco, Germany) was scanned using an oral scanner. The obtained scan data were then used as a CAD reference model (CRM), to produce a total of 10 models each, either using the milling method or the 3D printing method. The 20 models were then scanned using a desktop scanner and the CAD test model was formed. The accuracy of the two groups was compared using dedicated software to calculate the root mean square (RMS) value after superimposing CRM and CAD test model (CTM). RESULTS. The RMS value ($152{\pm}52{\mu}m$) of the model manufactured by the milling method was significantly higher than the RMS value ($52{\pm}9{\mu}m$) of the model produced by the 3D printing method. CONCLUSION. The accuracy of the 3D printing method is superior to that of the milling method, but at present, both methods are limited in their application as a work model for prosthesis manufacture.

Survey study on the Preference of Dental Medical Personnel for Dental CAD/CAM Milling Machines (치과용 CAD/CAM 밀링기에 대한 치과의료종사자들의 선호도 조사)

  • Song, Eun Sung;Kim, Bongju;Lim, Young-Joon;Lee, Jun Jae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.188-198
    • /
    • 2018
  • Purpose: Recently, according to the development of digital technology, computer aided design/computer aided manufacture (CAD/CAM) system is widely used for fabrication of various dental prostheses in the field of dentistry. This study aims to survey the present state and awareness of CAD/CAM system on domestic dental field, and to supply the advice for the application of the new system. Materials and methods: In this questionnaire survey was conducted for a total of 298 dentists, dental hygienist and dental technicians of the whole country including the dental hospital of Seoul National University for two months from November to December, 2016 through mail. Results: The most important purpose to consider when purchasing a dental CAD/CAM milling machine were the performance of the milling machine (64.43%) and the use of milling machine was the highest with 49.33% of manufacturing for dental prosthesis and customized implant abutment. In addition, more than 60% of respondents answered positively about the purchase of new milling machine if the CAD/CAM milling machine was improved to satisfactory performance. Conclusion: This survey results show that the improved CAD/CAM milling machine would be play an important role in the dental industry in preparation for digitization and the 4th industrial revolution.

Comparative evaluation of marginal and internal fit of three-unit Co-Cr frameworks fabricated by metal milling and direct metal laser sintering methods (금속 밀링과 직접 금속 레이저 소결 방식으로 제작한 3본 코발트-크롬 구조물의 변연 및 내부 적합도 비교 평가)

  • Ahn, Jae-Seok;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.81-89
    • /
    • 2020
  • Purpose: This in vitro study was conducted to evaluate the marginal and internal fit of three-unit Co-Cr frameworks fabricated by computer-aided metal milling and direct metal laser sintering(DMLS) systems in comparison to conventional casting method. Methods: Three-unit Co-Cr frameworks were fabricated by conventional wax up with casting(CWC), computer-aided metal milling(MM) and direct metal laser sintering(DMLS)(n=10 each). The marginal and internal fit of specimens were examined using a light-body silicone impression material. The thickness of light-body silicone was measured at eight reference points each, divided in the mesio distal and bucco lingual directions. All measurements were conducted by a stereomicroscope. Digital photos were taken at 150× magnification and then analyzed using a measurement software. The Kruskal-Wallis test and Bonferroni correction were used for analyzing the results. Results: The mean(SD) is ㎛ for fabrication methods, the mean marginal fit were recorded respectively, DMLS 39(27), followed by CWC 63(38), MM 220(128). and the mean internal fit CWC 95(47), DMLS 116(49), MM 210(152). In addition, the largest gap was found in the occlusal surface area among the internal measurement areas of all groups. Conclusion: As a result, the direct metal laser sintering method showed better marginal and internal fit than the metal milling method. The marginal and internal fit were statistically different according to the three fabrication methods(p<0.001). Except the MM group, the marginal fit of the CWC and DMLS groups was below the clinical standard of 120 ㎛. Based on the results of this study, it can be applied to clinical use in the future.

The Application of CAD/CAM in Dentistry (임상가를 위한 특집 1 - CAD/CAM 치과적 응용)

  • Choi, Ho-Sik;Moon, Ji-Eun;Kim, Sung-Hun
    • The Journal of the Korean dental association
    • /
    • v.50 no.3
    • /
    • pp.110-117
    • /
    • 2012
  • Dental computer-aided design (CAD) and computer-aided manufacturing (CAM) technology have rapidly progressed over the past 30 years. The technology, which can be used in the dental laboratory, the dental office and the form of production centers, has become more common in recent years. This technology is now applied to inlays, onlays, crowns, fixed partial dentures, removable partial denture frameworks, complete dentures, templates for implant installation, implant abutments, and even maxillofacial prostheses. Dentists and dental technicians, who want to use these techniques, should have certain basic knowledge about that. This article gives an overview of CAD/CAM technologies, histories and how it applies in prosthetic dentistry.

Evaluation of marginal discrepancy in metal frameworks fabricated by sintering-based computer-aided manufacturing methods

  • Kaleli, Necati;Ural, Cagri;Us, Yesim Olcer
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.124-130
    • /
    • 2020
  • PURPOSE. The aim of this in vitro study was to evaluate the effect of sintering procedures on marginal discrepancies of fixed partial metal frameworks fabricated using different sintering-based computer-aided design and computer/aided manufacturing (CAD/CAM) techniques. MATERIALS AND METHODS. Forty resin die models of prepared premolar and molar abutment teeth were fabricated using a three-dimensional (3D) printer and divided into four groups (n = 10) according to the fabrication method of metal frameworks used: HM (via hard milling), SM (via soft metal milling), L25 (via direct metal laser melting [DMLM] with a 25 ㎛ layer thickness), and L50 (via direct DMLM with a 50 ㎛ layer thickness). After the metal frameworks were fabricated and cemented, five vertical marginal discrepancy measurements were recorded in each site (i.e., buccal, facing the pontic, lingual, and facing away from the pontic) of both abutment teeth under a stereomicroscope (×40). Data were statistically analyzed at a significance level of 0.05. RESULTS. No statistically significant differences (P>.05) were found among the four axial sites of metal frameworks fabricated by sintering-based CAD/CAM techniques. The HM and L25 groups showed significantly (P<.001) lower marginal discrepancy values than the SM and L50 groups. CONCLUSION. Marginal discrepancy in the sites facing the pontic was not influenced by the type of sintering procedure. All fabrication methods exhibited clinically acceptable results in terms of marginal discrepancies.

Evaluation of marginal and internal accuracy of provisional crowns manufactured using digital light processing three-dimensional printer (DLP 방식의 3D 프린터로 제작된 임시 보철물의 변연 및 내면 정확도 평가)

  • Noh, Mi-Jun;Lee, Ha-Bin;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.44 no.2
    • /
    • pp.31-37
    • /
    • 2022
  • Purpose: The aim of this study was to evaluate the accuracy of provisional crowns manufactured using a milling machine and a digital light processing (DLP) printer. Methods: A full-contour crown was designed using computer-aided design software. Provisional crowns of this design were manufactured using a milling machine and using a DLP three-dimensional (3D) printer (N=20). The provisional crowns were digitized with an extraoral scanner, and 3D deviation analysis was applied to the scanned data to confirm their accuracy. An independent t-test was performed to detect the significant differences, and the Kolmogorov-Smirnov test was used for analysis (α=0.05). Results: No significant differences were found among the precision of marginal surface between the printed and milled crowns (p=0.181). The trueness of marginal and internal surfaces of the milled crowns were statistically higher than those of the printed crowns (p=0.024, p=0.001; respectively). Conclusion: The accuracy of provisional crowns manufactured using a milling machine and a 3D printer differed significantly except with regards to the precision of the internal surface. However, all the crowns were clinically acceptable, regardless of the manufacturing method used.

Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method

  • Lee, Suji;Hong, Seoung-Jin;Paek, Janghyun;Pae, Ahran;Kwon, Kung-Rock;Noh, Kwantae
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • PURPOSE. The accuracy of denture bases was compared among injection molding, milling, and rapid prototyping (RP) fabricating method. MATERIALS AND METHODS. The maxillary edentulous master cast was fabricated and round shaped four notches were formed. The cast was duplicated to ten casts and scanned. In the injection molding method, designed denture bases were milled from a wax block and fabricated using SR Ivocap injection system. Denture bases were milled from a pre-polymerized block in the milling method. In the RP method, denture bases were printed and post-cured. The intaglio surface of the base was scanned and surface matching software was used to measure inaccuracy. Measurements were performed between four notches and two points in the mid-palatal suture to evaluate inaccuracy. The palatine rugae resolution was evaluated. One-way analysis of variance was used for statistical analysis at ${\alpha}=.05$. RESULTS. No statistically significant differences in distances among four notches (P>.05). The accuracy of the injection molding method was lower than those of the other methods in two points of the mid-palatal suture significantly (P<.05). The degree of palatine rugae resolution was significantly higher in the injection molding method than that in other methods (P<.05). CONCLUSION. The overall accuracy of the denture base is higher in milling and RP method than the injection molding method. The degree of fine reproducibility is higher in the injection molding method than the milling or RP method.

Fabrication of complete dentures made with monolithic discs through CAD/CAM using facial scan data and individual tray duplicating temporary denture: a case report (안면스캔 데이터와 임시의치를 복제한 개인 트레이를 활용하여 CAD/CAM을 통한 monolithic disc로 제작한 총의치 수복: 증례 보고)

  • Ju Hyun Kim;Soo-Yeon Shin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.3
    • /
    • pp.158-167
    • /
    • 2023
  • As digital technology has advanced in the field of dentistry, the use of computer-aided design/computer-aided manufacturing (CAD/CAM) has brought changes to the stages of dental treatment. The use of CAD/CAM technology in dental restoration offers clinical efficiency and convenience by reducing production time and appointment intervals, while also simplifying the fabrication process to reduce errors. In this case, digital replication and printing of temporary teeth were used to aid a patient with complex medical histories and physical disabilities. The final impression obtained with silicone impression material included information on the vertical dimension, centric relation, and the angle and length of the anterior teeth, which shortened the production time and appointment intervals and increased patient satisfaction. The final restoration was fabricated using milling and monolithic disc techniques, demonstrating appropriate stability, retention, and support, resulting in functional and aesthetic satisfaction.

Full mouth rehabilitation of patient with severe dental caries with implant fixed prosthesis fabricated with milling and 3D printing method: A case report (밀링 및 3D 프린팅 방법으로 제작된 임플란트 보철물을 이용한 심한 우식 환자의 완전 구강 회복 증례)

  • Kim, Taeyoon;Lee, Jun-Suk;Hong, Seoung-Jin;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.288-295
    • /
    • 2019
  • Passive fit of prosthesis is an essential property of implant supported prosthesis for long term success and minimization of complications. And the property is determined mostly by fabrication procedure. There were limitations of extensive implant prosthesis because conventional casting method generate contraction error of long span prosthesis. However, Computer-aided design/Computer-aided manufacturing (CAD/CAM) technology of 3D printing and milling metal framework can overcome those limitations. This case is a full mouth rehabilitation using extensive implant fixed prosthesis. Removable interim prosthesis was made for esthetic, functional evaluation and a guide for implant insertion. After the insertion, implant fixed interim prosthesis was delivered. After additional evaluation and adjustment, final prosthesis was designed with CAD, the fabricated with CAM. Milling technique was used for anterior screw type implant superstructure and 3D printing technique was used for the anterior and posterior implant copings. Fit of the final restoration was favorable. The practitioner and patient were both esthetically and functionally satisfied with the final result.