• Title/Summary/Keyword: Computer-aided design/computer-aided manufacturing (CAD/CAM)

Search Result 214, Processing Time 0.019 seconds

Fabrication of additive manufacturing interim denture and comparison with conventional interim denture: A case report (적층가공을 이용한 임시의치 제작 및 기존방식의 임시의치와의 비교 증례)

  • Kim, Hyun-Ah;Lim, Hyun-Pil;Kang, Hyeon;Yang, Hongso;Park, Sang-Won;Yun, Kwi-Dug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.483-489
    • /
    • 2019
  • With development of digital dentistry, the 3-dimensional (3D) manufacturing industry using computer-aided design and computer-aided manufacturing (CAD/CAM) has grown dramatically in recent years. Denture fabrication using digital method is also increasing due to the recent development of digital technology in dentistry. The 3D manufacturing process can be categorized into 2 types: subtractive manufacturing (SM) and additive manufacturing (AM). SM, such as milling is based on cutting away from a solid block of materal. AM, such as 3D printing, is based on adding the material layer by layer. AM enables the fabrication of complex structures that are difficult to mill. In this case, additive manufacturing method was applied to the fabrication of the resin-based complete denture to a 80 year-old patient. During the follow-up periods, the denture using digital method has provided satisfactory results esthetically and functionally.

Full-mouth rehabilitation in an amelogenesis imperfecta patient with anterior open bite using CAD/CAM system (전치부 개방교합을 보이는 법랑질형성부전증 환자의 CAD/CAM system을 이용한 전악 수복 증례)

  • Lee, Sang-Hoon;Yi, Yang-Jin;Jo, Deuk-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.4
    • /
    • pp.410-418
    • /
    • 2017
  • Amelogenesis imperfecta characterized as abnormally formed enamel is caused by a defect of unique group of genes. Patients affected by this disease might have difficulties in social and psychological aspects due to non-esthetic teeth as well as functional problems caused by enamel detachment and tooth wear from their early ages. Adult patients with amelogenesis imperfecta can be treated with full-mouth restorations, which make functional and esthetic rehabilitations of severely worn tooth. However, the anterior open bite and lack of occlusal clearance for posterior teeth restorations due to compensatory extrusion are the intervening factors in the prosthetic treatment. Therefore, the determination of anterior tooth lengths, vertical dimension, and anterior guidance should be set carefully. Recently, computer-aided design and computer-aided manufacturing (CAD/CAM) techniques help systematic approaches and enable dentists to reduce time-consuming procedures in the diagnosis and treatment of full-mouth rehabilitation. This case report demonstrates the successful full mouth rehabilitation using a CAD/CAM system in a young adult patient with amelogenesis imperfecta and anterior open bite.

Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing

  • Oh, Ji-hyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.2.1-2.7
    • /
    • 2018
  • With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

Full-mouth rehabilitation of a patient with loss of posterior support and collapsed occlusion utilizing dental CAD-CAM system (구치부 지지 소실 및 무너진 교합관계를 보이는 환자에서 Dental CAD-CAM system을 활용한 완전 구강 회복 증례)

  • Jung, Jiwon;Heo, Seong-Joo;Kim, Seong-Kyun;Koak, Jai-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.1
    • /
    • pp.44-54
    • /
    • 2022
  • Without proper treatment on the multiple tooth missing area, the lack of posterior support and the supra-eruption of the teeth cause many severe complications of occlusion, vertical dimension and masticatory function. This report is a case of full-mouth rehabilitation of a patient with loss of posterior support and collapsed occlusion due to missing teeth area left untreated for a long time. The patient who is 68-year old male patient had some teeth fallen out while removing his old maxillary denture and was complaining about pain in the region of anterior teeth due to traumatic contact. The vertical dimension was corrected by 4 mm from the top cervical point of the canine through various evaluations and the edentulous area was treated with the implant fixed prostheses through computer guided implant surgery based on the diagnosis and treatment plan for definitive prostheses supported by computed tomography (CT) data analysis and CAD-CAM (Computer-aided design/computer-aided manufacturing) technique. After full mouth rehabilitation, the patient was very satisfied with remarkable improvements in mastication, function, and aesthetics.

Computer-aided design and manufacturing-based full mouth rehabilitation for a patient with excessive attrition and restricted vertical dimension: A case report (심한 치아 마모와 수복 공간 부족을 보이는 환자에서 CAD/CAM 기술을 활용한 완전 구강 회복: 증례 보고)

  • Cho, Jun-Ho;Yoon, Hyung-In;Yeo, In-Sung;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.495-505
    • /
    • 2019
  • This study reported the treatment of a patient with excessive worn dentition and limited maxillo-mandibular space for restoration, utilizing the computer-aided design and computer-aided manufacturing (CAD/CAM) technology. After the thorough examination of the patient's occlusal vertical dimension (OVD), full mouth rehabilitation was planned with increase of the OVD. The patient was satisfied with the provisional restorations establishing the increased OVD. The horizontal and vertical data of the patient's jaw relation that the provisional restorations contained were transferred to the definitive metal ceramic fixed prostheses by double scanning and three-dimensional printing. After the fixed restorations were cemented to the abutments, electronic surveying and three-dimensional printing were used to fabricate metal frameworks for the patient's removable partial dentures. The mandibular definitive removable prostheses were delivered to the patient's mouth and the full mouth rehabilitation procedures were completed. The digital technologies used for this case produced fixed and removable restorations satisfactory in masticatory, phonetic and aesthetic functions to both the patient and the dental clinician.

Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses

  • Barbin, Thais;Silva, Leticia Del Rio;Veloso, Daniele Valente;Borges, Guilherme Almeida;Presotto, Anna Gabriella Camacho;Barao, Valentim Adelino Ricardo;Groppo, Francisco Carlos;Mesquita, Marcelo Ferraz
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.329-337
    • /
    • 2020
  • PURPOSE. To verify the influence of computer-aided design/computer-aided manufacturing (CAD/CAM) implant-supported prostheses manufactured with cobalt-chromium (Co-Cr) and zirconia (Zr), and whether ceramic application, spark erosion, and simulation of masticatory cycles modify biomechanical parameters (marginal fit, screw-loosening torque, and strain) on the implant-supported system. MATERIALS AND METHODS. Ten full-arch fixed frameworks were manufactured by a CAD/CAM milling system with Co-Cr and Zr (n=5/group). The marginal fit between the abutment and frameworks was measured as stated by single-screw test. Screw-loosening torque evaluated screw stability, and strain analysis was explored on the implant-supported system. All analyses were performed at 3 distinct times: after framework manufacturing; after ceramic application in both materials' frameworks; and after the spark erosion in Co-Cr frameworks. Afterward, stability analysis was re-evaluated after 106 mechanical cycles (2 Hz/150-N) for both materials. Statistical analyses were performed by Kruskal-Wallis and Dunn tests (α=.05). RESULTS. No difference between the two materials was found for marginal fit, screwloosening torque, and strain after framework manufacturing (P>.05). Ceramic application did not affect the variables (P>.05). Spark erosion optimized marginal fit and strain medians for Co-Cr frameworks (P<.05). Screw-loosening torque was significantly reduced by masticatory simulation (P<.05) regardless of the framework materials. CONCLUSION. Co-Cr and Zr frameworks presented similar biomechanical behavior. Ceramic application had no effect on the biomechanical behavior of either material. Spark erosion was an effective technique to improve Co-Cr biomechanical behavior on the implant-supported system. Screw-loosening torque was reduced for both materials after masticatory simulation.

Influence of different universal adhesives on the repair performance of hybrid CAD-CAM materials

  • Demirel, Gulbike;Baltacioglu, Ismail Hakki
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.23.1-23.9
    • /
    • 2019
  • Objectives: The aim of this study was to investigate the microshear bond strength (${\mu}SBS$) of different universal adhesive systems applied to hybrid computer-aided design/computer-aided manufacturing (CAD-CAM) restorative materials repaired with a composite resin. Materials and Methods: Four types of CAD-CAM hybrid block materials-Lava Ultimate (LA), Vita Enamic (VE), CeraSmart (CS), and Shofu Block HC (SH)-were used in this study, in combination with the following four adhesive protocols: 1) control: porcelain primer + total etch adhesive (CO), 2) Single Bond Universal (SB), 3) All Bond Universal (AB), and 4) Clearfil Universal Bond (CU). The ${\mu}SBS$ of the composite resin (Clearfil Majesty Esthetic) was measured and the data were analyzed using two-way analysis of variance and the Tukey test, with the level of significance set at p < 0.05. Results: The CAD-CAM block type and block-adhesive combination had significant effects on the bond strength values (p < 0.05). Significant differences were found between the following pairs of groups: VE/CO and VE/AB, CS/CO and CS/AB, VE/CU and CS/CU, and VE/AB and CS/AB (p < 0.05). Conclusions: The ${\mu}SBS$ values were affected by hybrid block type. All tested universal adhesive treatments can be used as an alternative to the control treatment for repair, except the AB system on VE blocks (the VE/AB group). The ${\mu}SBS$ values showed variation across different adhesive treatments on different hybrid CAD-CAM block types.

Analysis of Fineblanking Forming using CAE (CAE를 이용한 파인블랭킹 성형 해석)

  • Lee, K.Y.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.60-64
    • /
    • 2011
  • Computer-aided engineering (CAE) is the broad usage of computer software to aid in engineering tasks. It includes computer-aided design (CAD), computer-aided analysis (CAA), computer-integrated manufacturing (CIM), computer-aided manufacturing (CAM), material requirements planning (MRP), and computer-aided planning (CAP). In this study, the stress of mold analyzed using CAE technique. Punch loads were same difference between 0.5 % and 1.0 % of clearance, but punch load was decreased according to increasing of clearance. Punch load of pre-piercing process worked a little smaller than piercing process. Therefore, the hole of fine blanking process is also more efficient to manufacture the true size after pre-piercing.

Marginal and internal fit according to the shape of the abutment of a zirconia core manufactured by computer-aided design/computer-aided manufacturing (CAD/CAM으로 제작된 지르코니아 코어의 지대치 형태에 따른 변연 및 내면 적합도에 관한 연구)

  • Kim, Ji-Su;Ryu, Jae-Kyung
    • Journal of Korean Dental Hygiene Science
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2022
  • Background: In this study, zirconia copings were fabricated by setting clinically acceptable inner values for prostheses using computer-aided design/computer-aided manufacturing (CAD/CAM). The processed copings were evaluated for the marginal and internal fit of each abutment shape with a CAD program using the silicone replica technique. Methods A total of 20 copings was produced by selecting models commonly used in clinical practice. After injecting the sample, the minimum thickness, internal adhesion interval, and distance to the margin line were set to 0.5, 0.05, and 1.00 mm using a dental CAD program, respectively. It was measured using a 2D section function in a three-way program of the silicon replication technology. Although the positions and number of measurements of the anterior and posterior regions differed, nine parts of each pre-tube were designated and measured by referring to a previous study to compare the two samples. Results As a result, the average margin of the mesial, distal, and buccal (labial) surfaces was 59.90 ㎛ in the anterior region and 60.40 ㎛ in the posterior region. The mean axial wall margin was 67.25 ㎛ in the anterior region and 69.25 ㎛ in the posterior region. In occlusion, the anterior teeth (77.70 ㎛), posterior teeth (77.60 ㎛), and both anterior and posterior regions were within the clinically acceptable range. Conclusion The edge and inner fit of zirconia coping manufactured using the CAD/CAM system showed clinically applicable results. To reduce errors and increase accuracy, materials and machine errors that affect the manufacture of prosthetics should be investigated. Based on our results, the completeness of prosthetics could increase if the inner value and characteristics of the material are adjusted when applied in clinical practice.

Fabrication of complete denture using 3D printing: a case report (3D 프린팅을 이용한 양악 총의치 제작 증례)

  • Lee, Eunsu;Park, Chan;Yun, Kwidug;Lim, Hyun-Pil;Park, Sangwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.202-210
    • /
    • 2022
  • Recently with the advance in digital dentistry, the fabrication of dentures using computer-aided design and computer-aided manufacturing (CAD-CAM) is on the rise. The denture designed through a CAD software can be produced in a 3-dimensional manufacturing process. This process includes a subtractive processing method such as milling and an additive processing method such as 3D printing and in which it can be applied efficiently in more complex structures. In this case, complete dentures were fabricated using Stereolithography (SLA)-based 3D printing to shorten the production time and interval of visits in patient with physical disabilities due to cerebral infarction. For definitive impression, the existing interim denture was digitally replicated and used as an individual tray. The definitive impression obtained with polyvinyl siloxane impression material was including information about the inclination and length of the maxillary anterior teeth, vertical dimension, and centric relation. In addition, facial scan data with interim denture was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a FDA-approved liquid photocurable resin. The denture showed adequate retention, support, and stability, and results were satisfied functionally and aesthetically.